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Preface

Over the last half a century, the rapid integration of mathematical modeling,
computing technology, and real-life applications has made computational simulation a
powerful tool for researchers to study complex phenomena in the nature and the
society around us. Along with theory and experiment, computational simulation has
now become the third pillar for the foundation of scientific exploration. In many
circumstances, computational simulations enable researchers to study complex
problems in greater detail with better understanding than theory or experiments, such
as in the study of protein dynamics. In other circumstances, computational simulations
allow researchers to explore numerous different scenarios much more quickly and
cost-effectively than experiments, such as in optimal design of modern aircrafts or
screening of potential drug molecules.

One of the main challenges facing researchers in the field of computational
simulations is the highly interdisciplinary nature of the field, which typically involves
complex real-world application problems, mathematical models describing those
problems, appropriate numerical solution algorithms for solving those model
equations, and necessary computer hardware and software to carry out simulations.
Successful computational simulation projects often require team-efforts and
knowledge in mathematical modeling, computer programming, and specific
application problems being studied.

The purpose of this book is to highlight the interdisciplinary nature of computational
simulations and to introduce researchers and graduate students who are interested in
computational simulations to a broad range of applications, with a particular emphasis
on those involving computational fluid dynamics (CFD) simulations. The book is
divided into three parts:

e Part I covers some basic research topics and development in numerical solution
algorithms for computational fluid dynamics, including Reynolds stress transport
modeling and central difference schemes for convection-diffusion equations
(chapter 1 — 4), and flow simulations involving simple geometries such as a flat
plate or a vertical channel (chapter 5 - 8).

e  PartIlI covers a variety of important applications in which CFD simulations play a
crucial role, including combustion process and automobile engine design (chapter
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9 — 12), fluid heat exchange (chapter 13 — 14), airborne contaminant dispersion
over buildings and atmospheric flow around a re-entry capsule (chapter 15 - 16),
gas-solid two phase flow in long pipes (chapter 17), free surface flow around a
ship hull (chapter 18), and hydrodynamic analysis of electrochemical cells
(chapter 19).

e Part Il covers applications of non-CFD based computational simulations,
including atmospheric optical communications (chapter 20), environmental
studies involving climate system simulations, porous media flow, and combustion
(chapter 21 — 23), solidification (chapter 24), and sound field simulations for
optimal acoustic effects (chapter 25).

I am grateful to InTech for the opportunity to serve as the editor for this book, and I
wish to sincerely thank all contributing authors around the world for their diligence in
following editorial guidelines, their willingness to support open access publications,
and their valuable technical contributions that made this book possible. Special thanks
are due to Ms. Ana Nikolic, Mr. Zeljko Spalj, and the technical staff at InTech for their
editorial efforts, detailed reviews, and professional assistance. I also would like to
thank the University of Texas at Arlington for supporting my participation in this
book project. Without the support from the authors, InTech staff, and the University,
this book could not have become a reality.

Jianping Zhu, Ph.D.

Professor and Chair

Department of Mathematics

The University of Texas at Arlington
Arlington, Texas,

USA
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Reynolds Stress Transport Modelling

Sharaf F. Al-Sharif
Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah
Saudi Arabia

1. Introduction

The Reynolds-averaged Navier-Stokes (RANS) approach is the most commonly employed
approach in CFD for industrial applications, and is likely to continue to be so for the
foreseeable future. The need to handle complex wall-bounded flows, and the need to
evaluate large numbers of design variations usually prohibits high-fidelity approaches such
as direct numerical simulation (DNS), and large-eddy simulation (LES). The application
of Reynolds-averaging to the equations of motion introduces a set of unclosed terms, the
Reynolds Stresses, into the mean flow momentum equations, and turbulence models are needed
to provide closure of these terms before the set of equations can be solved. Within the
framework of RANS approaches, a hierarchy of modelling schemes exists based on the level of
sophistication in which these unclosed terms are modelled. In Reynolds stress transport (RST)
modelling, rather than assuming a direct (linear or non-linear) link between the Reynolds
stresses and mean strain, a separate transport equation for each of the stress components is
solved. This in principle provides a number of advantages over other RANS models, which
will be reviewed here.

This chapter aims to provide a general introduction and overview of Reynolds Stress transport
modelling. The first section will provide a brief historical background on the development of
this class of models. Next, the theoretical background and rationale underlying the most
common modelling practises within this framework are presented. This is followed by a
discussion of some numerical implementation issues specific to RST modelling within the
context of the finite volume method. Finally the chapter is closed with some concluding
remarks.

2. Development of RST modelling

Early work leading to the development of Reynold-stress transport (RST) modelling was
mainly theoretical, due to the relative complexity of this level of modelling compared to the
available computational capabilities of the time. Chou (1945) constructed a formal solution
to the fluctuating pressure Poisson equation that is the basis for current models of the
pressure—strain-rate correlation. Later Rotta (1951), laid the foundation for Reynolds stress
transport modelling by being the first to develop a closed model of all the terms in the exact
equation (Speziale, 1991). Because of limited computational capability at the time, successful
computations were not carried out until several decades later (Speziale, 1991). Another
important development came when the continuum mechanics community speculated on the
potential similarity between turbulent flow and the flow of non-Newtonian fluids (Gatski,



4 Computational Simulations and Applications

2004). This meant that tensor representation results from the continuum mechanics literature
could be used to formulate expressions for the Reynolds-stress tensor, as first proposed by
Rivlin (1957). These ideas were then expanded by Crow (1968; 1967), and Lumley (1967; 1970).
Computational work accelerated in the 1970’s with the works of Daly & Harlow (1970),
Reynolds (1970), Donaldson (1971), Naot et al. (1972), Hanjali¢ & Launder (1972), and Lumley
& Khajeh-Nouri (1974). In a landmark paper, Launder, Reece & Rodi (1975), developed a
hierarchy of Reynolds-stress transport models by consolidating the work of various separate
groups into a unified framework. They were able to successfully apply the models to a variety
of free-shear and wall-bounded flows of practical interest (Launder et al., 1975). Their model,
particularly the simple version (the ‘Basic’ model), has since been one of the most widely
used RST models in engineering applications because of the combined advantage of being
simple in form, yet retaining the ability to overcome many of the weaknesses of eddy-viscosity
formulations (Hanjali¢ & Jakirli¢, 2002).

Later Schumann (1977) introduced the concept of realisability as a constraint to guide model
formulation. By this it is meant that models should be designed to prevent certain unphysical
solutions, such as negative normal stress components, or a stress tensor that violates the
Cauchy-Schwartz inequality. Lumley (1978) extensively discussed the significance and
implementation of realisability requirements. He devised and used anisotropy invariant
maps, or ‘Lumley triangles’, to illustrate the limiting states of turbulence with respect to values
of the second and third invariants of the Reynolds-stress anisotropy tensor. Lumley pointed
out that to prevent a negative normal stress component from arising during computations, the
time derivative of the component must be made to vanish at the instant when the component
itself vanishes, thereby preventing a negative value to arise as time progresses. Such a
situation can arise near a wall or a free-surface, where the interface-normal component decays
much faster than the other components as the interface is approached, thus approaching a
two-component limit. Shih & Lumley (1985) later used these arguments to devise a realisable
model for the pressure-strain-rate correlation. Their model, however, did not perform
well in simple shear flows, and higher order corrections were later added to achieve better
agreement with these flows (Craft & Launder, 2002). Speziale (1985; 1987) used arguments of
material-frame indifference in the limit of two-dimensional turbulence to develop a model for
the rapid pressure-strain-rate correlation. Speziale et al. (1991) later considered the simplest
topologically equivalent form (returning the same equilibrium states) to that of the Speziale
(1987) model, to arrive at a more simplified, similarly performing version (Speziale et al.,
1991). This latter model is also in relatively common use in engineering RST computations.
The UMIST group, starting with the work of Fu et al. (1987), Fu (1988), Craft et al. (1989), and
Craft (1991) developed a model also based on ensuring realizability in the two-component
limit, but using an approach slightly different from that used by Shih & Lumley. This model
(the “'TCL" model, in what follows) uses a cubic expansion of the rapid pressure-strain-rate
correlation in k and a;;. It was shown to achieve significant improvements over previous
models in a wide range of flows.

3. Modelling practises

In this section the basic equations for the mean flow of incompressible fluids are presented,
along with the equations for the relevant turbulence statistics. At the level of Reynolds stress
transport modelling, the Reynolds averaged Navier-Stokes (RANS) equations are solved,
along with separate equations for each independent component of the Reynolds stress tensor,
as well as a transport equation for the scalar rate of dissipation of turbulent kinetic energy.
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The modelling approach used for the various terms appearing in the exact Reynolds stress
transport equation are briefly reviewed.

3.1 Basic equations of turbulent flow

Turbulent flows are characterised by highly fluctuating velocity, pressure, and other field
variables. One approach for dealing with this fluctuating nature of the flow, the one most
widely used by engineers, is to work with an averaged form of the basic equations. In Reynolds
averaging the instantaneous flow variables are decomposed into an average quantity and a
fluctuation. Thus,

ﬁi:Ui-i-ui )
ﬁ:P—'—p,

where capital letters denote averaged quantities, and small letters denote purely fluctuating
quantities. The averaging can be either over time or over a repeated realisation of an
experiment with the same nominal conditions. The latter, ensemble averaging, will be
implied in the following, to allow for temporal variations of mean quantities. When this
decomposition is substituted into the Navier Stokes equations for incompressible flow, and
the result is ensemble averaged, one obtains the Reynolds-averaged Navier-Stokes (RANS)
equations
ou; ou; 19P  9*U; OJuju;

o o T Tpaw e oy

@)
When the decomposition is substituted into the continuity equation for incompressible flow,

and averaging is applied, one obtains for the mean flow

au;
axi -

0. (3)

If this is subtracted from the instantaneous continuity equation, the continuity condition for
the fluctuating velocity is obtained

aui

axi
meaning that both the mean and fluctuating velocity fields are individually divergence free.
The last term in the RANS equation (2) contains the Reynolds stress tensor #;u;. Thus
the averaging process introduced a new unknown tensor term, and the set of equations is
no longer closed. This is called the closure problem of averaging approaches. The task of
turbulence modelling is to construct appropriate models for these stresses that relate them to
the mean flow quantities, and thus to construct a closed set of equations allowing numerical
solutions to be obtained. An additional implied objective in the engineering context is for the
models to be as computationally inexpensive as possible while being able to reproduce the
behaviour and phenomena of relevance to the problem in question, at the required level of
accuracy.
A transport equation for the fluctuating velocity can be obtained by subtracting the RANS
equation (2) from the Navier-Stokes equation. Using the divergence-free property of the
fluctuating field, the result can be written as

=0, 4)

Du; 1dp ou 9 du
Dt 0 9x; “ ox;  0x; [uiu; — i) Vaxj] ()
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The operator D/ Dt is used to denote the material derivative following the mean flow

D 9 ad
Since this interpretation will be used exclusively here, the over-bar on this mean-flow material
derivative will subsequently be dropped. An exact equation for the Reynolds stresses can be
obtained by using (5) to construct

DM,‘M]' _ .D”i Duj

Dt YDt TUpre

where it has been assumed that averaging and taking the material derivative (6) commute.
The result is

Duiuj —_ | wu %_’_ﬁ%
Dt ! kaxk / kaxk

p (w9

+p (ax]- + ox;

Nl
8xk

)
CITRTE F P —
— — g — %(H@'k + ”]"Sik)]

axk

Ju; Buj

- axk axk ’

The first term on the right hand side above is the production rate of Reynolds stresses by mean
velocity gradients. This term is closed at the RST level since it is given in terms of quantities
that are being solved for at this level. All the remaining terms in the equation, except for
viscous diffusion, require modelling. The second term is a correlation between the fluctuating
pressure and the fluctuating strain rate. From continuity this term is traceless, so it does not
contribute directly to the kinetic energy of the turbulence. Its effect is to redistribute the energy
between the stress components, so it plays a very important role in determining the degree
of anisotropy of the stresses. Accordingly, it has received much attention from researchers,
and continues to do so. The third term in (7) is a combination of several diffusion terms, all
having the effect of spatial redistribution of the Reynolds stresses. Finally, the last term is
the dissipation rate of Reynolds stresses by viscous action at the smallest scales of turbulence.
Since the smallest scales of motion are assumed to be isotropic, the dissipation rate tensor is
frequently modelled as ¢;; = %s d;j, where ¢ is the scalar dissipation rate of turbulent kinetic
energy. This approximation is not applicable near walls or free surfaces, where the dissipation
tensor becomes markedly anisotropic. Equation (7) can be written in short form as

Duiuj
Dt

= Pyj + ¢ij + Dij — ¢i5, ®)

where it is understood that each term above defines the notation for the corresponding term
in (7).
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An equation for the kinetic energy associated with the turbulent fluctuations, k = @, can be

obtained by taking half the contraction of (7). The resulting equation is

Db gm0, g Lo, 0 9 ©)
Dt - 1 kan an an ik ‘Dp %k axk an .
In short form, this can be written
Dk
Ht = PK + D—c¢ (10)

The first term on the right hand side of (9) is the production of turbulent kinetic energy by
mean velocity gradients. The next term is the diffusion of turbulent kinetic energy by various
mechanisms. Finally, the last term is the scalar dissipation rate of turbulent kinetic energy. The
short form (10) defines the notation that will be used in the following for the respective terms
in (9). It is often convenient to work with the deviatoric Reynolds stress anisotropy tensor 4;;
defined as,

_ w2

%= T = 30

- (11)
3.2 Pressure-strain rate correlation
Modelling of the pressure—strain rate correlation is to a large extent guided by consideration
of the exact equation for it. An equation for the fluctuating pressure can be obtained by taking
the divergence of (5), and invoking continuity (4). This gives

1 p ou; ou; 02

,7:_2717]_7 1 — T 12

0 0x0x oxj 9x;  0x;0X; (i — Witt) (12)
A formal solution to this Poisson equation can be constructed using the method of Green’s
functions, as first demonstrated by Chou (1945). The Green’s function of the Laplacian
operator is

-1
" —
gixlx') = drtjx — x|
The fluctuating pressure is thus given by
ou; ou; 02 dx’

B, R Bty A
Bx;. ox; ax;ax]%

p_1ff

o 4Am / / /V
It can be seen from this equation that the fluctuating pressure can be decomposed into three
components (Pope, 2000), corresponding to the three terms appearing on the right-hand
side of (13). The first term is linear in the turbulent fluctuations, and responds directly to
changes in mean velocity gradient. It is thus called the rapid pressure, p". The second is
a turbulence-turbulence interaction term, that does not respond directly to changes in the
mean flow, but through the turbulent cascade process, and is thus called the slow pressure, p°.
The last term is the solution to the homogeneous (Laplace) equation and satisfies appropriate
boundary conditions that ensure the superposition of the three parts, p, satisfies its own
boundary conditions (Pope, 2000). This final term is only significant close to a wall or a free
surface, and, since the emphasis here is on modelling regions away from walls, it will be
neglected. Wall effects on ¢;; are considered in Section 3.3.

(uju; — uiy) x| + Surface integral. (13)

x/ t
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Based on the above decomposition, the pressure-strain rate correlation can similarly be
decomposed into rapid, slow, and wall influence terms. The rapid part can be constructed

as follows
ou; . o,

q>z] <ax + axl> (14)

v (au,> 1 ///oo (auk au,> (au,) dx’

p\oxi ) 2 /)] \ 0x] 3x] ox; x—x
p j oo\ 9X) 0% i) | | (15)

1 8uk ’ dx’

sy L[ g O

au" outside the integral it is assumed that this term is reasonably constant over the

volume mtegral. In homogeneous flows, that is of course exact, but is an approximation in
inhomogeneous ones. One can thus write:

A,
9" = o (Miljk + Mjlik) , (16)

where the fourth rank tensor Ml‘l]‘k is given by

32 ul X + )d
Maje = 21 /// ar]ark [r]’ 17

using r = x’ — x for the separation distance. The M jk tensor is symmetric in the first two
indices, and in the last two

Mijk = Miije = M. (18)
The divergence-free velocity condition means that contraction over the middle indices results
in the quantity vanishing:

Mijjk =0, (19)
and contraction over the last two indices can be shown to yield (twice) the Reynolds stress
tensor

Mg = 2705007 - (20)
The last of these kinematic conditions (20) suggested to workers that the M tensor could
be modelled as a function of the Reynolds stresses (Launder et al., 1975). The approach taken
was to model M as a polynomial function in the stresses. The most general fourth-rank tensor
linear in the Reynolds stresses satisfying the symmetry conditions (18) is

Mijkl :aék,uiuj + ﬁ(&iku]-ul + (5,-lu]-uk + (5jkuiu, + (5j,uiuk)

7 1)
+y6ijtttty + 1610k + v(0idjr + 0idir) Ik,

where the coefficients a, B, 7,7, v are constants (or functions of the invariants of a,']'). The
continuity condition (19), and the normalisation condition (20) can be used to reduce the
number of undetermined constants to one. When this is done, and the resulting modelled
Mijx is substituted into (16) the resulting linear rapid pressure-strain rate model is

M G 30y—2 fou;  OUj\  (8y-2) . )
¢h =~ (B — 2/3P4) ok ax]-‘Lax,- (D —2/3Dsy), (22)
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where Dj; is given by

ol ol
Djj = fuiuka—xj - ujukaf , (23)

and D = Dj;/2. This is the first of the two Launder-Reece-Rodi (LRR) models in Launder
et al. (1975), called the Quasi-Isotropic model (LRR-QI). A simplified version of (22) was also
suggested in Launder et al. (1975) by observing that the dominant term in this equation is the
first one appearing on the right hand side. The model thus obtained, first proposed by Naot
et al. (1972), is sometimes termed the isotropization of production model (LRR-IP),

¢l = —ca(Pij — 3P 8y). (24)

Various other models have been proposed following similar lines of reasoning, in which M
is modelled as a tensor-polynomial function of the Reynolds stress tensor or, equivalently,
expressed in terms of k and 4;;

M= M(k,a). (25)

It is worth pointing out at this stage that there is an intrinsic weakness in all such models
of the form (25). The tensor M, as defined by (17), contains two kinds of directional
information — the direction of the energetic velocity components, and the direction of variation
or dependence of the two-point correlation (Pope, 2000). Only the former type of information
is contained in the Reynolds stress tensor, so two fields having the same Reynolds stresses can
have different M tensors. More explicitly put, the evolution of the Reynolds stresses is not
uniquely determined by the Reynolds stresses (Pope, 2000). This is an intrinsic limitation in
RST modelling, that is difficult to overcome without significantly complicating the modelling
approach and/or computational cost (Johansson & Hallback, 1994; Kassinos & Reynolds,
1994). This limitation is known to cause poor results in flows where the velocity gradient
has a strong rotational component, such as in pure (or dominant) rotation, and in high shear
rate flows (Johansson & Hallback, 1994). However, in many other flows, including ones with
significant rotational effects, RST models have been shown to produce very good results.

As for the slow pressure—strain-rate term, (pf]-, it is difficult to extract anything from the exact
expression, pertaining to the non-linear turbulence—turbulence interaction part of (13). Most
early models followed Rotta’s (1951) linear return to isotropy model for the slow term

(stj = *C1€ai]' . (26)

This model is motivated by the decay of homogeneous anisotropic turbulence in the absence
of mean velocity gradients. It is generally observed that in such cases turbulence progressively
tends towards an isotropic state, hence the negative sign in (26).

Experimental evidence shows that the return-to-isotropy process is in fact non-linear in 4;;

(Chung & Kim, 1995). When plotted on anisotropy invariant maps, the paths taken during
return-to-isotropy experiments are not straight lines, and have different behaviour depending
on the sign of the third invariant (Pope, 2000). It is also found that the rate of return is highly
dependent on the Reynolds number. A number of nonlinear models for the slow pressure
strain term have been suggested in the literature.

3.3 Wall effects on ¢;;
The presence of a wall alters pressure fluctuations by viscous effect through the no-slip
condition, and by inviscid effect through the impermeability condition. DNS results show that
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the viscous effect is confined to a region within y™ = 15 from the wall (Mansour et al., 1988).
The inviscid wall-blocking effect on the other hand is significant where the distance from the
wall is of the same order as the turbulent length scale. Wall blocking causes two opposing
effects; wall reflection of the fluctuating pressure field increases the energy-redistributing
pressure fluctuations, which pushes turbulence towards isotropy, while it also causes selective
damping of the wall-normal fluctuating velocity component in turbulent eddies, thereby
increasing anisotropy. The latter effect dominates, and turbulence anisotropy near a wall is
higher than that in a free shear flow at a similar rate of shear. To account for this, Gibson &
Launder (1978) proposed two additive corrections to ¢;; using the unit normal vector to the
wall, n;. The first, based on the proposal of Shir (1973), is an additive correction to the slow
part

s,w |y — 3  p—
¢ij = C%)E (ukumnknmdij — juiuknknj — ju]-uknkni fw (27)

and the second, is a correction to the rapid part
97 = CF (Shnmenndsy — 3@inen; — 395men ) fo (28)

where C¥ = 0.5, CY = 0.3, and f,, = 0.4k%/2/(ex,) is a damping function based on the ratio
of the turbulence length scale to the normal distance to the wall, x;,.

3.4 Modelling dissipation
While modelling of the turbulent kinetic energy, and of the pressure-strain rate correlation,
has been to at least some degree guided by consideration of their exact equations, the same
is not true for the standard dissipation rate model (Pope, 2000). Dissipation of turbulent
kinetic energy is associated with the smallest scales of the fluctuating field, while the kinetic
energy itself is mostly contained in the largest scales of fluctuations. The exact dissipation
rate equation is comprised of a large number of terms that are all related to dissipative-scale
processes, and all but one of the source-terms require modelling. It is thus not a useful
starting point for modelling the dissipation rate. Instead the more empirical approach taken is
motivated by the spectral energy transfer view of dissipation. The kinetic energy of the larger
energy containing eddies is transferred by vortex-stretching in the presence of mean velocity
gradients to smaller eddies, and the same process occurs at the ‘next” smaller scales, and so on
to the smallest dissipative scales, where kinetic energy is finally converted to heat by viscous
(molecular) action. If the molecular viscosity is somehow changed, all that happens is that
the size of the dissipative scales change to accommodate the rate of energy they receive, but
the rate itself is not affected. Thus even though the mechanism of dissipation is governed by
processes that occur at the smallest scales, dissipation can also be viewed as an energy-transfer
rate that readjusts itself with the amount of energy it receives. In this sense, the amount
(as opposed to the mechanism) of dissipation is in fact determined by the energy in larger
scales. Under the assumption of spectral equilibrium, the transfer rate of energy across the
spectrum of turbulence scales is constant and determined by the rate of energy input. Based
on this assumption, and the preceding arguments, the conventional equation for dissipation
is assumed to be of the form
2

%i = CslkP"‘ D, — Csz%,
where D; is the diffusion of e. The modelled production term above reflects the assumed
direct link between a single rate of transfer of energy across the spectrum and production

(29)
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of energy at the large scales. This assumption is an obvious weakness in the model when
the turbulence is not in equilibrium, as when unsteady solutions are sought, or where the
time-scale of the mean flow is of the same order or smaller than the characteristic time-scale
of turbulence. In such cases the small-scale turbulence may not have enough time to adjust to
the large-scale scale variations, and the instantaneous link implied by the production term in
(29) is questionable.

The destruction term in (29) is motivated by consideration of the decay of homogeneous
isotropic turbulence in the absence of production (Pope, 2000). In such a flow one expects
that the turbulence will decay in a self-similar form in which the rates of decay of k and ¢ are
proportional

k/% ke
de de
e/ % e/ %

If this proportionality constant is labelled C;, the following destruction term is implied

de €2

T =—CaT (30)

3.5 Diffusion modelling
There are three diffusive transport terms on the right hand side of (7). The first is the viscous
diffusion term

CaTHTH

axkaxk
which is closed and does not require modelling. The following two terms are the pressure

diffusion and turbulent convection, respectively. Most commonly these are modelled
together as a combined turbulent diffusion term, Tj;, using the generalised gradient diffusion
hypothesis (GGDH) of Daly & Harlow (1970),

] € ol
Ty = Fr (Cs%ulukia;k]) (32)

where C; is typically 0.22.

A deficiency of this model is that it does not preserve the symmetry under cyclic permutation

of indices that is exhibited by the triple velocity moments ;1111 This is only significant when

the triple moments and pressure diffusion are modelled separately. In such case an improved

model that has been suggested by Hanjali¢ & Launder (1972) is often used,
k ITHT b [TTsTH CITRTE

”i”j”k = —ng (uiula#x[ =+ ”]’”lﬁll =+ ukulﬁ) . (33)

More elaborate models exist in the literature, as in (Craft, 1998) for example, but the models
mentioned above are the ones more commonly used.
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3.6 Accounting for low-Re effects

Viscous effects on turbulence properties and their implications on modelling are considered
next. The absence of viscous terms in the equation for fluctuating pressure (12) suggests
that viscous effects on the fluctuating pressure will be of secondary importance compared
to the inviscid effects due to impermeability, considered in section 3.3. The focus of the
discussion is thus directed to the dissipation rate tensor, and the transport equation for the
scalar dissipation rate. When discussing low-Re effects, reference is frequently made to the
turbulent Reynolds number, Rey, defined as

Ref = — . (34)

As previously mentioned, at high Reynolds numbers the dissipation rate tensor is assumed
to be isotropic, gj = % € 5,-]-. This, however, will cease to be true near a wall where the high
anisotropy of the turbulence is expected to be increasingly felt at the smaller scales as the wall
is approached. The simplest model accounting for this effect is that of Rotta (1951), which
is based on the idea that the anisotropy of the dissipation rate tensor is similar to the stress
anisotropy, thus
uiu]-
gij = X E. (35)

This model was used by Hanjali¢ & Launder (1976) to give the following blending
approximation for the dissipation rate tensor

2 3uUju;
e =3¢ |(1=f) 8+ fi3 ’k7 , (36)

where f; is a function of Re; whose value ranges from 1 to 0 as Re; ranges from 0 to co, ensuring
the desired behaviour of ¢;; in these limits. The near-wall model (35) is the simplest form
accounting for near-wall anisotropy of the dissipation tensor. Launder & Reynolds (1983)
have shown that this form does not give the correct near-wall asymptotic behaviour of the
individual tensor elements, which are rather given by

— = i#2j#2

fi2 _ Uitz 37
=2 i#2 (37)
€2 _ Ul

I3 k

What is needed then is a term to replace the Rotta model in (36) which yields the correct
asymptotic behaviour described by (37), and which contracts to 2¢. One possible form that
satisfies these requirements is

e/k (uiuj + Ul l’l]' Ny + u]-uk n; Ny + U] Ny 1y (5,]>

et — , (38)
(1+ 3mpmqmying /K)

P

where n; represents a component of the wall-normal unit vector (Pope, 2000). The use of
the wall vector in a model is undesirable because of the ambiguity it introduces in complex
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geometries. One way to avoid it is based on the observation that the quantity Vk!/2, evaluated
near a wall, is a vector that points in the wall-normal direction. Thus

. Vkl/Z
7= W' (39)
and using the value of the dissipation at the wall for a wall with 7i = (0,1,0),
1/2
akl/Z k! /2 <
K2 = - =/ —. 4
|v ‘xz—O dxy 0Jx 2v (40)
Xz:0
Quantities of the form n;n; appearing in (38) can therefore be replaced by
2v 9k1/2 gkt/2
ninj = = 41)

e ox; 0x;

Following Hanjali¢ & Launder (1976), when considering the implications of Low-Re effects
on dissipation rate modelling, it is instructive to consider the exact transport equation for the
energy dissipation rate. This is given by (Daly & Harlow, 1970)

De _ _, 0mdudu _,( 0w \*_ 0 | 2v0wdp o
Dt dx; 0x; 9% 0x1.0x] oxy 0 0x; 9x  Oxx
o L 42)
aui aul aul aul Bul Bu,- azui
| 4 == — U — .
axl 8x,- Bxl- axk Bxk E)xl Bxkaxl

All the terms on the right hand side above are unclosed, with the exception of viscous
diffusion. The first two terms on the right hand side of (42) are the dominant ones in high
Re flows. Respectively they represent generation and destruction of e. The third term, which
represents a combination of diffusive processes, can be of the same order as the difference of
the first two, and must therefore be retained. These three terms are modelled by the three
terms that typically appear in high-Re ¢ transport models, as in section 3.4. The fourth and
fifth terms are respectively of order Retl/ 2 and Re; smaller than the other terms (Hanjali¢ &
Launder, 1976), and are thus neglected in high-Re model versions. In low-Re models these
terms need to be reconsidered and accounted for if necessary. The last term is often modelled

as
aui azui km 62 Ul» azu,-

B 2””kaTcl 0x;dx; Cesv € <axjaxl> <axk8xl> ‘ 43
This term is present in several Low-Re models developed by the Manchester group. As
for the fourth term, initial proposals meant to account for it by allowing the coefficient
of the production and destruction terms, Cgand Cyp, to be functions of Re;. Similarly,
possible viscous effects on the diffusion terms were to be accounted for by allowing the
term Ce to depend on Re; (Hanjali¢ & Launder, 1976). However, computations revealed that
adding the term in (43) alone was sulfficient in producing good agreement between computed
energy profiles and available data to within experimental accuracy. Thus dependence of the
coefficients Cq1, Cgp, Ce¢ on the turbulence Reynolds number is often (not always) abandoned.
Finally the viscous diffusion term, neglected in high-Re models, is retained in its exact form.
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3.7 The Launder—Reece—-Rodi models

In their seminal 1975 paper, Launder, Reece & Rodi laid out a hierarchy of RST models based
on arguments presented in section 3.2. Two rapid pressure-strain rate models were proposed.
The first is the quasi-isotropic model (LRR-QI), which has the most general linear tensorial
form satisfying the required symmetry conditions, and is given by

¢l = —Ca(P;j — 567 P) — C3(Djj — 30 Pc) — 2C4k Sy, (44)

where Si]' is the mean strain rate tensor, defined as:

o 1 BU,- aU]
Sif = 5( o ) , (45)

and the coefficients have the following values
C, =0764, C3=0.182, C4=0.109. (46)

The second rapid pressure-strain rate model is the isotropization of production model
(LRR-IP), which is also referred to as the ‘Basic’ model, and simply retains the first term of
the QI model and neglects the other two. Thus,

¢ = —Ca(Pj — 30 Py), (47)

where the coefficient C, is now set at 0.6. Both models use the Rotta return-to-isotropy model
for the slow pressure-strain rate term,

¢jj = —Creayj, (48)

but the coefficient C; is 1.5 for the QI model and 1.8 for the IP model.

In the original proposal turbulent diffusion Tj; is modelled using (33) for the triple velocity
moments (pressure diffusion is usually neglected) In many later implementations this is
replaced by the simpler GGDH. Thus the models can be written as

Ditiit; . vw O ____dmig\
o = Di — Cueaij + ¢ + 05 + ¢ * o Cop K ) T 30%¢ )

where ¢ is replaced by either the QI or IP models, and the wall-reflection terms (,bf]fw, gbf]w are

given by (27) and (28), respectively. Since these models are intended as high Re models, the
viscous diffusion term is neglected and an isotropic dissipation rate tensor is assumed.
Finally, closure is completed with the standard high-Re dissipation rate equation, given by

De €2 J k oe
ﬁ Cslk CEZ? + axk (CE Mkul ax ) (50)

where
Cq =144, Cp =192, C,=0.15. (51)
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The Shima low-Re model

In its original form, the Launder & Shima (1989) model is a low-Re version of the Basic
model that uses wall reflection terms and includes Ret-based damping coefficients to return
the correct near-wall behaviour. Shima (1998) later proposed a low-Re model, based on the
QI pressure-strain rate model, that does away with the wall reflection terms in the interest
of more general applicability to complex geometries. The model admittedly gives stress
anisotropy results in steady channel flow that are inferior to his previous low-Re formulation,
but this is a compromise made in order to discard the wall reflection terms with their
associated difficulties related to complex geometries. The pressure-strain rate coefficients are
no longer constant, and are given by the following expressions:

C1 = 14245492 A%7[1 — exp(—49A2%)] x {1 — exp[—(Ret/60)?]} (52a)
C, =07A (52b)
Cs = 0.3A%° (52¢)
Cy = 0.65A(0.23C; + Cy — 1) + 1.3A9%°C3 (52d)

where Aj, A3 are the second and third invariants of the stress anisotropy tensor:
Az = a,-]-a]-i A3 = a,-]-ujkaki . (53)
and A is the ‘flatness’ parameter first defined by Lumley (1978),
A=1-3(Ay— A). (54)

Turbulent diffusion, comprising the triple velocity correlation and the pressure velocity
correlation, is modelled using the simple gradient diffusion of Daly & Harlow (1970)

) k____dujuj
Tij = a (ngukul axl ) (55)

where C; = 0.22.
The dissipation equation is given by
De €

o7 = Caz (56)

€€ 0
pP— C52? + — (ngukulaixl +1/aixk

axk

where £ is the homogeneous dissipation rate, defined as:

2
1/2
F=e— 2 (agx, ) . (57)
1

The coefficients Cyy,C; retain their typical values 1.92, 0.15 respectively, but C; is prescribed
as:

k o¢ oe )

Ce1 = 144 + B1 + Ba, (58a)
B1 =025Amin(A/2.5—1,0) — 1.4Amin(P/e — 1, 0), (58b)
By = 1.0AA’ max(A/2.5—1,0), (58¢)

A =min(A*, 4), (58d)

. ) k1.5 P} k1'5
~[2(E)2)
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3.8 The Speziale-Sarkar—-Gatski model

Speziale et al. (1991) developed a pressure-strain rate model that is quadratic in a;; by first
considering the most general form for ¢;; (slow and rapid) that is linear in the mean strain
and rotation tensors and quadratic in 4;;. Then they obtained their model by considering the
simplest subset of that general form that has an equivalent structural equilibrium in plane
homogeneous flows. The resulting model has a rapid part that is linear in 4;;, and a quadratic
slow part, given by

* aij do 1
¢ij = = (2dre +dy Pe) o + Felaiar; — 3ana00)

VA d
+ (dg, — d§T2) k51] + ;k(aiksjk + aijik — %aklskléij) (59)

ds
+ 5 k(@ + 2 Qi)

where ();; is the mean vorticity tensor defined as:

1/0u; 9
0 = 5(8—%—8—%) (60)

and the coefficients have the following values
dy =17, d; =18, dy=42, d3=1%, dj=13, dy=125 ds=04. (61)

The rapid part of the SSG model, aside from the nonlinear dependence on Aj in third term of
(59), is tensorially equivalent to the QI model.

Diffusion is modelled using the GGDH, and the standard high-Re version of the ¢ equation
(50) is used, but the coefficient Cy is assigned the slightly lower value of 1.83.

3.9 The Hanjali¢-Jakirli¢ low-Re model
Jakirli¢ & Hanjali¢ (1995) developed a low-Re RSTM that is based on the LRR-IP model, and
the Gibson & Launder (1978) wall corrections (27) and (28), making modifications to handle
Low-Re and near-wall effects. The modifications are expressed in terms of Rey, the stress
anisotropy invariants, A, A3, in addition to invariants of the stress dissipation rate anisotropy
tensor, E;, E3, defined as:
Ey =ejje;;  E3 = ejjejeyi, (62)
_ &2

eij = 5ii. (63)

e 377
A ‘flatness’ parameter based on the stress dissipation rate anisotropy invariants is also used:

E:p%(ErEg,). 64)

The modelled RST equation is given by:

Du;u; 2 s,w rw
Dt :Pi]' - C1£lll']' - C2 (Pl] — gél]PK) + (Pl] + (P

g
0 e____Oujlij
+87x] <C5Eu[ukiax}< ) — El] .

(65)
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The coefficients are specified by:

C1 = C+VAE?, C=25AFY%f, F=min(06, A,), (66)
C, = 0.8VA, (67)
. Ret 3/2
o min(5) 1. &
Cy =max(1-0.7C,0.3), Cy =min(A4,0.3). (69)

The damping coefficient appearing in the wall correction terms (27) and (28) is given by:

1 k2
fw = min [72.589611 , 1.4] . (70)
The modelled dissipation rate transport equation is given by:
De € e 0 k oe 0F
2 CqiP —CHnf oy S oy
pr ~ Cagle—Cafep + 50 (Ce e Vaxk) o
k 2U, 02Uy
Caav—ujtl; =———=——=— — Caa fuk QO O + 5.
+ Cea v Thitlj axsox; x;0m, eafak Oy Oy + 5,
The coefficients have the following specified values:
Caq =26 Cnp=192 C3=025 Cy =01 C,=018, (72)
and )
Coo—14 Ret
g Cald (B 7
fs Ce ( 6 ) ( 3)
The length-scale growth correction, S;, is given by:
192 101\ | &
= —=— ) =1 (=—) ,0p A, 74
51 max{[(c,axn> <claxn) 0} k 4)
where ! = k3/2/¢, and C; =25.
The anisotropic stress dissipation rate tensor is modelled as:
« 2
eij = fsel; + (1- fs)gziijs, (75)
where s;‘j is given by:
" € Ll,'u]‘ + (u,-uk Tl]‘ leJrM]‘uk nj N + Uiy ng ny n; l’lj)fd

3 U,
1+ 5npng = fa

fs=1—VAE?, f;=(1+01Re) " (77)
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3.10 The Two-Component-Limit model

Researchers at UMIST, starting with the work of Fu et al. (1987), and Craft et al. (1989),
developed a stress transport model that satisfies the constraint of realizability in the limit
of two component turbulence. An outline of the derivation of the model is presented in Craft
& Launder (2002). Using similar arguments as in (21), but retaining up to cubic terms in a;j,
and using the additional constraint of realizability, the following model for (pfj was obtained

¢ =—06 (Pij 2 /35ijp) +0.6a;;P

. Ugldj Ut M % iy oU; ou;
0‘2{ K {aleraxk Pl g

- CZ{AZ(Pij — Djj) + 3apian(Pun — Dmn)}

7 A
+ ¢ (7 - —) P;; —2/36;;P
+ O.Z[aij — 1/2(aikukj - 1/351‘]‘1‘12]13 — 0.05aijalkPkl
Uil Upty
—&-0.1{ X Pm]-i- k —2/36;; r ml}
Uyl Ui _ Uyt Ul % aﬂ
+0.1 {7](2 1/36; [ — ] [6le + 13k (a X + e

Uuju; ugu;
+ 02%(% - P,k)}

where Aj is the second invariant of the stress anisotropy tensor defined in (53). In the earliest,
high-Re, version of the model the recommended values of the coefficients, Cy, Cé, are

C, =055 Ch=06.

As for the slow pressure-strain-rate term, a second-order expression in ajj is used, where
the coefficients are allowed to depend on the stress anisotropy invariants in such a way as
to satisfy realizability (Craft & Launder, 2002). Dependency on the third invariant, A3, is
introduced through the flatness parameter, A, defined in (54). The flatness parameter becomes
zero when one stress component vanishes; thus using the form

¢ = —Crelaj + oy (ayap — 3A26;)] — faca, (79)
where the coefficients are given by
C1 =31(AA)Y2 Cj=11 f,=AY2,

ensures that gbfj drops to zero when the turbulence is two-component.
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Low-Re TCL model

A low-Re version of the TCL model was presented by Craft (1998). This version adopts
a slightly different decomposition of the velocity-pressure gradient correlation II;; (which
appears in the exact RST equation before it is decomposed, as in (7)). The alternate
decomposition was found to be more appropriate when modelling inhomogeneous flows.
Where this correlation is typically decomposed into the pressure-strain-rate correlation and
pressure diffusion, an alternative decomposition is obtained by defining:

¢ = T — 3651 Iy . (80)

Constructing (,b;‘j in this way ensures that it is redistributive in nature, since it is traceless and

thus cannot contribute to the level of kinetic energy. This redistributive quantity is modelled
as

inh, inh,
R R S (81)
The quantities qb;‘j’s, 4);},1’ have the same form as their homogeneous counterparts (79) and (78),

respectively, but the coefficients C;, C, and C} are prescribed by

C1 = 31fafre Ay %, (82a)
) — AL5Re; 3.2A
Cpy = min {0.55 {1 —exp ( 100 "ixs [ (82b)
;. 35(5 - Q)
C; = min(0.6, A) + 31970 2S;, (82¢)
where
fi = VAfre, + A1 = fre,), (83)
fre, = min[(Re¢/160)?,1], (84)
(A/14)1/2 A <0.05
fa==1{ A/08367 0.05<A<07 (85)
Al/2 A>07,
S* =Sk/e, QF =Qk/e, (86)
S = (25587 Q= (20;0;)"?, (87)
2/25;iS xSy 8)
I = 742 & \a/0/
(Slmsml)?)/2
and

1 (ou; , dU; 1 (ou; U
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The inhomogeneous corrections are independent of the wall-normal vector, and are given by

inh,s € —— A 3———3A _ 3 1A\4A
i =fun ¢ (ndy oy — s’ — ujdy)dj

€ (A 3——1A _ 3 Ay A
+fw2k—2ulun(unukdk 51] - zuiundj — jujundi )dl

i [ 2VEVE | aVEOVE 2 avEaVE . avkavk) 0
w7\ Mgy, ox; U x, ox; ox; 3 Ml ox, ox; ox, ij ox; 0x;

klax ox; ij Mtk oxp X, ek ox; 0x;

o 2( OVAIVA 3 VAWA 3_ afa\/Z)
wl ’

au, i

¢;;‘hf = fikz L dydn (did; — 1dydidij), 91)

where the ‘normalised length-scale gradlents , di, dlA, introduced by Craft & Launder (1996),

are used indicate the direction of strong inhomogeneity, when present, without the use of a
wall-normal vector. These are defined by

Ni 8(k1~5 /S)

di=————""—-¢ h Nj = ———+
P = 05T (NeNQO5’ where N; ox; (92a)
NA (k19 A% /¢)
(N S A_ 2\ 2 7R
d; 05T (N{‘N{‘)‘w , Wwhere N; o, . (92b)
The coefficients appearing in the inhomogeneous corrections are given by:
o . Ret —55
fu1 = 0.4+ 1.6min {1, max [0, 1- T} } ) (93)
_ . Re; — 50
fw2 = 0.1+ 0.84; min {1, max {O, 1-— T] } , (94)
fus =25VA, (95)
fur =022, (%)
fi=25fa. 97)

As discussed in Section 3.6, the dissipation tensor near a wall or free surface is anisotropic, and
the low-Re TCL accordingly prescribes the following anisotropic model for the dissipation rate

tensor,
E + S// + ;;/
&ij = (1—fe) T + 3fs€(51], (98)
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where
, U ity oVk a\/
€ = T Oy omy U
oy i OVk ovk MJM] afa\/
k ax, ox; k ox; ox;
Uil 1A ;A Wi a4 MW oA
el =¢ (27011 dfs;j — kzdl dff — —didf ) (99)
e VA IVA a\F VA
=CesV k 51']' +2
ox;  0xy Jx; 0x;
D— € + & T kit
2¢ !
and the coefficients are taken as f, = A3/2, C,s = 0.2. The term e;]. is similar in nature

to the model in (38), and its purpose is to ensure the correct wall-limiting behaviour of ¢;;,
as discussed in Section 3.6. The term ¢ serves the specific purpose of producing the dip
in €1 near y/J = 0.1 observed in DNS studies of plane channel flow, and finally the term
s’l;’ improves the behaviour of ¢;; at a free surface where there is strong inhomogeneity even
without significant viscous effects (Craft & Launder, 1996).

Dissipation rate equation

Early high-Re implementations of the TCL model used the same transport equation for the
scalar dissipation rate (50) as in the LRR models. In later versions of the TCL model (Batten
et al., 1999; Craft, 1998), an equation for the homogeneous dissipation rate,

2
1/2
F—e—2v (a'a‘x ) , (100)
1

is solved, which takes the form

Dé & (e—2)& 9 k 08 08
D c.ip—c cl, = (c =
by = Gt~ Ca - K ox ( v +"axk)
s (101)
+C vk Uil Oy 97U,
e / 9x;0x; 9x;0x, E:

The term Y is a length-scale correction based on the proposal of Iacovides & Raisee (1997),
and is given by

2
Ye = cd% max|[F(F +1)2, 0], (102)
and F in turn is given by
ol dl
F=|—-—| - C{[1 —exp(—B:Ret)] + B:CiRerexp(—BeRet) }, (103)
an ax]-

1=k%/e, Be=0.1069, C;=255. (104)
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The remaining coefficients are given by

1.92
1+0.74,V/4A°
Cl, =10, Cg = 0.875,

Cyg =05, Ce=0.15.

Ci1 =10, Cp = Ay = max(A,0.25),

(105)

4. Numerical issues specific to RST modelling

There are a number of numerical difficulties associated with the use of RST models that are not
present when using eddy viscosity formulations. In particular, the use of RST models results
in relatively large source terms that increase the stiffness of the algebraic equation system,
in addition to the fact that the equation set becomes highly non-linear and strongly coupled
(Leschziner & Lien, 2002; Lien & Leschziner, 1994). When using a collocated grid, there is also
the issue of odd-even decoupling of the velocities and the Reynolds stresses.

The use of an eddy-viscosity approach adds to the momentum equations a momentum
diffusion term that can be treated implicitly, thus enhancing stability. Since no such term
is present in RST model equations, one approach to improve stability when applying RST
models is to add and subtract a gradient-diffusion term based on an effective viscosity, V.

Considering the stress term u2, for example, one may write

— — ou ou
2_ (72 _
w= (u + Vet ax) Veff 5y 7

allowing the unbracketed term to be treated implicitly in the U-momentum equation.

Since the effective viscosity does not affect the final converged solution, it is not uniquely
specified. One would, in general, simply be trying to significantly reduce the residual stress
term that must be treated explicitly in the source term. One way to specify the effective
viscosity is by reference to a simplified form of the Basic Reynolds stress model equations.
What is needed is to construct a relation between u2 and aa—lxl, between v2 and aa—‘;, and so on.

Take u?2 for example, and start by assuming its transport equation is source dominated:

2

P+ ¢ — 3

851‘]‘ =0. (106)

Substituting for ¢1; from the Basic model,

uz 2 1 2
Py — Cle(? - g) — Co[Pr = 5(Pry + P + Py)] — 560 = 0. (107)
This leads to
—olu 2 £e—
2= _ = _ 242
25y (1 3C2) Crpus+
.. — U
<other terms not containing u“ or $> =0, (108)
or

— _ (2-3CG)lkau

u? = & iox +OLT. (109)
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Thus a suitable choice for vq7 is

2-4Crk—
SR bS] 110
Vi1 o, (110)
Similar consideration of the v2 transport equation leads to the specification
2-3Ck—
=23y 111
V2 c, (111)
and relating the shear stress uv to %—5 leads to the following specification for vy,
1-Ck—
= —-v2. 112
V12 TR (112)

Maintaining the required coupling between the velocity and Reynolds stress components can
be accomplished through a Rhie-Chow-type interpolation (Leschziner & Lien, 2002):

— 1 — S (Up — W)
2 _ 2 u P w e)pP
2 = %<Zi:a,-ui 8u) + o (113)
Hp /ﬂp
Similarly,
= _He | p (Up—Ue)e - _H (Up — Ug)
T T Ay WS TR A
Using linear interpolation for v{; and He/a,, one obtains for the value at face e:
Uz = %(ulz, + u%)
| —
linear interpolation
1 (114)

+ m{ [Vfl Jrl/1El} (Up — Ug) — Vfl(uw —Ue)p — Vfl(uw - UG)E} .

velocity smoothing

Similar expressions can be constructed for the remaining faces, and for the remaining stress
terms.

5. Concluding remarks

This chapter has provided an introduction to the subject of Reynolds stress transport
modelling. A brief historical account of the development of this class of RANS models was
presented. This was followed by an account of the theoretical background, assumptions,
approximations, as well as the rationale behind the most commonly adopted RST modelling
practises. Finally, some numerical implementation issues specific to RST models were briefly
discussed.

The account served to illustrate areas of strength of this class of RANS models, such as the
exact form of the stress production terms, and the abandoning of the incorrectly assumed
direct link between stress and strain that characterises eddy-viscosity formulations. The
presentation also serves to illustrate some inherent weaknesses of present RST models,
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which might also be thought of as areas for potential improvement. These weaknesses are
a natural result of the complexity of turbulent phenomena, and of the persistent closure
problem—transport equations for any level of statistical moments will always contain
unclosed higher moment terms.

The realizability constraint is ultimately a kinematic constraint that serves to prevent
certain un-physical results. Aside from that, it does not prescribe any particular dynamic
stimulus—response type of link between the strain field and inter-component redistribution
processes. Therefore there is no reason to expect that redistributive models, in the form
of tensor polynomial expansions in stress anisotropy and velocity gradient, satisfying such
constraints should return the correct response to all possible strain fields and histories,
particularly ones far removed from those for which the models were calibrated.

This does not diminish the value of RST models, but rather serves to emphasise the
importance of testing and validation in order to understand the limits of validity and accuracy
for intended applications. As discussed earlier, there is always a trade-off between accuracy
and computational cost, and the need for reliable RANS models for many types engineering
simulations is not likely to be replaced by LES or DNS in the near future. More importantly,
these arguments emphasise the need to strive for a deeper and more general understanding of
the complex turbulent phenomena described by the unclosed terms in the transport equations,
with the aim of building better models.
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1. Introduction

Most of nature and industry flows are turbulence. There are three kinds of numerical
simulation methods for turbulent flows (Lesieur 1990; Pope 2000; Sagaut 2000, 2006): direct
numerical simulation (DNS), Reynolds-averaged Navier-Stokes equations (RANS) and large
eddy simulation (LES). DNS is a straightforward way to simulate turbulent flows. Full
Navier-Stokes equations are discretized and solved numerically without any model,
empirical parameter or approximation. Theoretically speaking, results of DNS exactly reflect
the real flow and the whole range of turbulence scales are computed. With DNS, people can
compute and visualize any quantity of interest, including some that are too difficult or
impossible to be measured by experiments. But as we all know the computation cost is very
high. For high Reynolds number flow, even modern computer technology can not satisfy the
computation requirement.

In RANS, the flow quantities are decomposed into two parts: the average or mean term and
the fluctuating term by applying Reynolds averaging. The effect of the fluctuating quantities
on the mean flow quantities is described by the so called Reynolds stress tensor, which is
must be modelled in terms of the mean velocities. Typical models can be grouped loosely
into three categories: algebraic models, one-equation models and two-equation models.
RANS is simple and robust. It is widely used in engineering problem. The general limitation
of RANS is the fact that the model must represent a very wide range of scales. While the
small scales tend to be universal, and depend on viscosity, the larger scales depend largely
on flow condition and boundaries. So there is no one universal model for all flows. For
different flows, the model must be modified to obtain good results. Another issue is that
usually a time averaging is adopted in RANS. So RANS has difficult to handle unsteady
flows.

In LES, a filter is applied to separate the large scales from small scales. Then only the large,
energy carrying scales (or called resolved scales) of turbulence are computed exactly by
solving the governing equations. While the small, fluctuating scales are modelled, which is
also called subgrid scales (SGS). Compared to RANS, LES has several advantages: 1) LES
can capture the large scales directly which are the main energy container of turbulence and
response for the momentum and energy transfer. 2) The dissipation of turbulence energy is
believed to be done by small scales. Since small scales are thought to be homogenous,
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universal, and less affected by flow and boundary conditions, the SGS model can be simple
and requires fewer ad hoc parameters when it is applied to different flows. This is the big
advantage of LES over RANS. That also is the reason why simple Smagrinsky model can
obtain reasonable results in different flows. 3) LES can solve the unsteady flow directly. In
additional, LES requires much less computation resource when compared to DNS because
only large scales are computed.

Although LES has some advantages, for a long time RANS methods were used almost
exclusively for the analysis of turbulent flows for practical engineering problems. LES has
largely been used to study simple turbulent flows(Mahesh et al 2004; Georgiadis 2008;
Bouffanais 2010). The primary reason is the computational cost. Until recently, the field of
LES is attracting more and more people’s attention. Not only its own scientific researcher
who is applying LES to study the turbulence, but more industrial partners and engineers
have started implementing LES to study real complex flows. There are two main reasons: 1)
the urgent requirements from industry. the characteristics of lots nature or real engineering
flows are determined by unsteady large scale motion, such as the external flow around
ground vehicle, high attack angle airfoil flow etc. RANS models usually have difficult to
handle such flows. But in order to improve the performance of airplane, to reduce the drag
and noise around vehicle, we have to investigate such flow in depth. (2) rapid increases in
computing power, memory, and storage, plus high efficient and high order computation
algorithm. Indeed in the past few years applying LES to real engineering flows has becomes
a research hot spot, such as LES of airfoil (Mary&Sagaut 2001; Dahlstromé&Davidson 2003;
Mellen et al 2003), ground vehicle (McCallen et al. 2006, Kitoh ef al. 2009;
Krajnovic&Davidson 2005, Rodi 2006; Tsubokura et al. 2009; Minguez ef al. 2008),
combustion and reacting flows (Moin 2002), weather forecasting etc. But the application of
LES is still limited. There are some key issues needed to solved before LES can be
successfully applied to real engineering turbulence(Georgiadis 2008; Bouffanais 2010), such
as the suitable SGS model, the choice of filter, the wall model, the transition model, the effect
of numerical errors and the interactions between these issues. However as Bouffanais
(Bouffanais 2010) pointed out that despite the numerous challenges still facing LES, one can
fairly admit that LES has become one of the most promising and successful methodology
available to simulate industrial turbulent flows.

In this chapter, three key issues of LES are discussed briefly: the SGS model, the filter and the
numerical errors. First, the SGS model is the most important item in LES and has been
extensive studied. There are thousand of different models which have been proposed during
the past. But most of them are limited to simple geometry and have difficult to be applied to
engineering problems. Right now the most widely used SGS models in complicated turbulence
are still the simple Smagrinsky model (Smagorinsky 1963) and the so called the monotone
integrated LES (MILES) model. So a simple, robust, efficient and can handling complicated
geometry SGS model is what we need. The second problem is the choice of filter. In simple
geometry, usually a smooth filter is adopted which is defined continuous in the whole domain.
But in complicated geometry, only local discrete filter can be used. Obvious the order of
filtering will be decreased. Its effect on SGS model and final simulation result need to be
investigated. The third is the numerical errors of different discretization schemes. The effect of
numerical errors on LES is a delicate issue and has been ignored for a long time because in
simple geometry very high order can be achieved by pseudo-spectral mothod or other
algorithm. But for complex problem, usually only second order can be achieved. The
interaction between numerical scheme and SGS model is complicated. A first extensive
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theoretical analysis of numerical errors in LES has been proposed by Ghosal (Ghosal 1996) and
later Chow and Moin (Chow and Moin 2003). They believed that 2nd order discretization
scheme is not suitable for LES because it introduces errors larger than the SGS term. High
order schemes are necessary. By applying the eddy-damped quasi-normal Markovian
(EDQNM) theory to LES, a so called dynamic error analysis has been performed by Park and
Mahesh (Park and Mahesh 2007) Their results show that low order scheme is acceptable for
LES. The study of Yang and Fu (Yang and Fu 2008) show that there are complicated
interactions between SGS model and numerical errors. A good SGS model can not only
represent the effect of small scales to large scales, but also can dump the unphysical energy
introduced by numerical scheme. So by careful designed SGS model, low order discretization
scheme can also obtain reasonable result. Fauconnier et al (Fauconnier et al 2009) also point out
that low-order methods may have advantages over high order scheme because the dissipation
error of SGS model can cancel part of the numerical errors resulting in a reduction of the total
errors on some quantities. Of course the disadvantage is that the accuracy of small scales is not
controlled. So the best is high order scheme plus high accurate SGS model.

2. Governing equations and numerical methods

In Large Eddy Simulation (LES) a filtering operation is applied to separate the large scales
from the small scales (Leonard 1974). In general, a filtered variable can be written as

%)= [, F()G(x,x;8)dx 2.1)

where G is the filter kernel and D is the filtering domain. The filter is characterized by a filter
width A . The corresponding wave number k. =7, A is called as the filter cut-off wave
number.

For our study, the fluid is assumed to be incompressible; the viscosity is constant; there are
no body forces; and the flow is initially homogenous, isotropic, i.e. there are no mean
velocity gradients. So the incompressible Navier-Stokes equations after applying a low-pass
filter can be written as

ou Owity  10P 0| fow Ouj| Oty i (2.2)
ot ox; pox;  0Ox; ox; ox ox; ox;

Above equations are also called the incompressible LES equations. The u, P, p, v are the
velocity, pressure, density and kinematic viscosity, respectively. 7; is the subgrid stress
(SGS) tensor

Ty = Ul — U Uj . (2.3)

It represents the effect of the unresolved (small) scales. It is the only unclosed term in the
above LES equations (2.2) and should be parameterized in terms of the resolved (large)
scales.

In order to isolate other effects, the simplest homogenous, isotropic turbulence is chose as
our simulation case. The advantage is that we can obtain the statistical quantities of this
turbulence easily in spectral space, such s energy spectrum, total kinetic energy etc. So in
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such case it is convenience to write the governing equations in spectral space. Note the
continuity equation can be combined with the pressure term through the projecting
operation (Lesieur 1990). So the governing equation in spectral space can be simplified as

o~

(o ) =R 03 5, ). 4

where 'A' means the Fourier transform, the tensor P,,(k)=J,, —kik,, / k* is called the
projection operator, which ensures the continuity equation automatically satisfied. And the
k=[K|.

For spatial discretization, a computation method similar to Rogallo’s (Rogallo 1981) is

adapted here. For the viscous term in the left hand side of equation (2.4), Rogallo proposed
an integrated factor method which can solve it analytically.

L] 1) | =-e"B,, (N, 00 (25)

So the only term needed to be discretized is the nonlinear term in the right hand side,
Nm(k)zikj@m(k), which usually is solved by high order spectral scheme. But for

engineering problem, spectral method is not available at most cases. Finite difference
scheme or finite volume scheme is used instead. Among them, Padé compact scheme is
widely adapted due to its flexibility in handling complex geometry and to obtaining high
order. For one dimensional derivative, the Padé scheme proposed by Lele (Lele 1992) can be
expressed as

afi +fi+afi=a ﬁ“z_Aﬁ’-l +b fi+24_Aﬂ'-2 : (2.6)

Different coefficient defines different order of compact scheme. The highest order is 6th for 3
point stencil. The parameters of Lele (Lele 1992) are shown in Table 2.1.

Scheme a a b Order
Padé2 0 1 0 2
Padéd 1/4 3/2 0 4
Padé6 1/3 14/9 1/9 6

Table 2.1. Parameters for Padé compact scheme.

For the temporal advancement of the nonlinear term, an explicit second-order Runge-Kutta
scheme, also known as predictor-corrector scheme, is used. It's simple and efficient. Briefly,
equation (2.5) with only nonlinear term on the right hand side can be seen as the following
form

0
—u=N 2.7
ot (27)

where N represents the nonlinear term. By applying second-order R-K scheme to above
equations, we get
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where n and n+1 represent the different time steps, and * represent the middle step variable.
Eq. (2.8) is also called the predictor step and Eq. (2.9) is called the corrector step.

3. SGS model

In LES, only the large, energy carrying scales of turbulence are computed exactly. Specify in
LES equation (2.2), the large scales are the filtered velocities, u;, which are also called the
resolved scales. The small ones, u;, (unresolved, or subgrid scales) have been removed from
the equation and needed to be modelled, i.e. 7;; in equation (2.2).

The SGS model is the key issue in LES. Since only large scales are resolved in LES, the
energy transfer from large scales to small scales is cut off. The energy will accumulate at the
cut-off wave number and lead to the unphysical solution. So the main role of SGS model is
to provide necessary small scales dissipation and thus remove the accumulated energy.
There are many different approaches for the modelling of the SGS stress tensor.
Traditionally they are divided into three main categories: eddy viscosity models, similarity
models and mixed models. Discussion of standard LES models can be found in some review
paper, such as Piomelli (Piomelli 1999), Mathew (Mathew 2010) etc. Below we only discuss
the eddy viscosity model briefly.

The eddy viscosity models assume:

7= ru] — U = —2Ut§ij + 1/35ijz'kk 3.1)

which relate the SGS stresses to the large scale strain-rate tensor S;;, where Sj; is

s _1[5”1' ﬂ%} (3.2)

) ox;  ox

and v is the eddy viscosity. Like RANS, equation (3.1) was developed by analogizing to the
molecular viscosity. So different eddy viscosity models are actually different methods to
calculate the vx.

The Smagorinsky model (Smagorinsky 1963) is perhaps the most successful SGS eddy

7

viscosity models, which takes eddy viscosity proportional to the product of A2 and [

v, =(C.A)[3] 3.3)

where C; is called the Smagorinsky constant, A is the grid size and ‘g‘ :(zgl_]gij >1/2 is the

magnitude of the strain-rate tensor. By choosing different Cs for various flows, Smagorinsky
model has been used with considerable success. For isotropic decaying turbulence, the value
of the Smagorinsky constant is taken to be around 0.18~0.23 (Lilly (Lilly 1996)), but in shear
flow or near boundaries, C; must be decreased and values 0.06~0.1 are preferred (Piomelli ef
al. (Piomelli et al.1988)).
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Smagorinsky model can properly account for the global energy transfer. It is simple and
robust, which make it the most widely used SGS model. But the modeled SGS quantities
correlate poorly with the actual SGS quantities obtained from DNS. Moreover it is an
absolutely dissipative model and tends to overestimate the SGS dissipation. It only allows
one way energy flux, i.e. from large scales to small ones, and it fails to predict the inverse
energy transfer from the subgrid scales to the resolved scales (backscatter) which is found in
most flows. Many ad hoc corrections and variation of eddy viscosity models are proposed to
solve the difficulties mentioned above. Among them the dynamic model of Germano et al.
(Germano et al.1991) and its variations are the most attractive ones. The dynamic model
calculates the eddy viscosity dynamically and obtains good results in different turbulence.
But it still has some problems when applied to complex engineering flows.

3.1 Velocity Estimation Model (VEM)

To construct a reasonable and reliable SGS model, to properly predict the interactions
between large scales and small scales is the key, which means we need to know more
detailed information about the nonlinear interactions between large and small scales.
Fortunately during the last several years there are many investigations in a variety of
turbulent flows, including isotropic and channel flow, at low Reynolds numbers using direct
numerical simulation databases and experimental measurements (Zhou 1993; Hartel et al.
1994; Domaradzki & Rogallo 1990). Their studies show that the large scales contain enough
information. Many of the observed features of the exact SGS interactions can be inferred
from the dynamics of the resolved scales alone. Thus it implies a possible way to improving
SGS model, i.e. to estimate the small scales from large scales by using the observed
properties of the nonlinear interactions. Based on that concept, Domaradzki et al
(Domaradzki & Saiki 1997; Domaradzki et al 2002) develop the velocity estimation model in
both spectral and physical space. Stolz and Adam also proposed similar model called
deconvolution model (Stolz 1999).

The velocity estimation model is based on two observations: first, the dynamics of small
scales are strongly determined by the large, energy carrying eddies; second, the contribution
of small scales to large scales are mostly contained within wavenumbers that are twice that
of the cutoff wavenumber, k.. These two observations rely on the properties of nonlinear
interactions in turbulent flows and have been elucidated by a large number of theoretical,
numerical and experimental investigations (Zhou 1993; Domaradzki & Rogallo 1990;
Domaradzki & Saiki 1997; Domaradzki et al 2002). Basically these studies showed that most
of the subgrid scale transfer happens in the range of 0.5k. ~k. and is determined by scales in
the range of k. ~ 2k.. This implies that only a limited range of wavenumbers needs to be
considered. Especially in VEM the modes beyond 2k are ignored. With a proper estimation
of the velocity field the subgrid scale stress tensor could be determined directly from the
resolved scales and provides enough dissipation for LES.

The eddy viscosity models basically try to solve the imaginary v, by related to the large

scale strain-rate tensor. If we know the full velocity field of the turbulence flow, the 7;; can

be calculated directly from the definition equation (2.3) and do not need any assumption.
Since the velocity in LES is the filtered velocity, a simple way to recover the full velocity is
defiltering, i.e., an inversion of the filtering operation (2.1). Such a procedure is also called
deconvolution. But the defiltered velocity does not contain any small scales information.
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Domaradzki et al (Domaradzki & Saiki 1997; Domaradzki et al 2002) proposed a method to
estimate the small scales. This is the basic idea of the velocity estimation model. In order to
describe the different velocities, we use u to present the full, unfiltered turbulence velocity;
u means the filtered velocity; and u” is the small scale velocity. And the relation among
them is

u=u+u' (3.4)

VEM contains two steps: First is the defiltering operation, i.e. try to recover the full velocity
u from the filtered velocity u

u~Gl 3.5
, (3.5)

which is inverse operation of (2.1). Bertero and Boccacci (Bertero & Boccacci 1998) give a
detailed discussion about it. Since any filtering will loss part of original information, the
defiltering can not recover the full velocity according to Riemann-Lebesgue theory. Only
some very special filtering function and variables can return to its original state. Most
results of defiltering can only be approximate. The velocity u in equation (3.5) actually only
contains large scales information, so we denote it by #’. If we using tophat filter and the
filtering size is twice as the grid size, then the filtering operation can be expressed as

U =au;_q +bu; +cu;,q, (3.6)
and 4, b, c are constants. Then the defiltering operation is

aii | + it +ciid,, =1 . (3.7)
By defiltering, the large scales ii” is closed to the original u, but there is no small scales. If
we approximate the u using i°, i.e. let u ~ii’. And then calculate the SGS tensor T directly
from the definition =i’ -4 #° . Through practice, it is found that if the Reynolds
number is not too high, the result is good enough. But if the Re number is high, the error is
somehow too large. The information of the small scales is needed. The second step of VEM
is to estimate the small scales. For full developed turbulence, the small scales are thought to
be homogeneous, so a simplified way to estimate small scales can be described as

u'=6ON'. (3.8)

where N’ is the growth rate of subgrid scales due to the nonlinear interactions among
resolved scales and 0 is the time scale related to the eddy turn-over time. The detailed
description of the full process can be found in paper (Domaradzki & Saiki 1997; Domaradzki
et al 2002). Thus the final velocity can be expressed as

urii=i"+u'. (3.9)
Correspondingly, the SGS stress tensor is
r=iifi—1i il (3.10)

The energy spectral of full (DNS), filtered, defiltered and estimated velocity are shown in Fig. 3.1
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VEM was implemented in both spectral and physical space. It was applied to different
flows, such as homogenous tubulence, incompressible channel flow, Rayleigh-Bénard
convection flow, and obtained quite good results. But the disadvantage of VEM is that the
procedure it uses is quite complicated and need much more CPU time than Smagorinsky
model.

10° =
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10" VEM
F —~—— estimated small scales
X102}
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Fig. 3.1. Sketch of energy spectral for full (DNS), filtered, defiltered and estimated velocity.

3.2 Truncated Navier—Stokes (TNS) equations approach

As we can see, the traditional eddy viscosity models use the filtered velocity to calculate Ty,
while the VEM tries to recover the full velocity from the filtered velocity and then use it to
calculate 7. So one may think: if we can get the full velocity from the experiment data or
DNS directly, can we just skip the filtering and defiltering steps? Based on that concept,
Domaradzki et al (Domaradzki et al 2002; Domaradzki & Yang 2004) developed a new TNS
approach from VEM model. TNS uses the full velocity. It actually solves the N-S equations
directly instead of LES equations. So it does not have the SGS term. Due to limitation of grid,
it is an under-resolved DNS run. According to the energy transfer theory, the energy will
accumulate at high modes. A mechanism is needed to provide necessary dissipation to
remove the accumulated energy, such as filtering /truncation. A similar model in engine
application is the MILES model, which depends on numerical scheme to provide implicit
dissipation.

TNS model is still based on the same two observations of energy transfer as VEM. The large
energy carrying eddies can determine the dynamics of the small scales; in return, the
contribution of the small scales to the large scales are mostly contained within wavenumber
range between the cutoff wavenumber, k., and 2k.. Correspondingly, a scale decomposition
is performed in TNS as shown in Fig. 3.2: a range of physical (large) scales up to the
traditional LES wave number cutoff k., and a range of modeled (SGS or estimated) scales
between k. and 2k.. The nonlinear interaction between the low wavenumber modes k<k. and
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the high wavenumber modes k.<k<2k. provides a natural dissipation mechanism for the
large scales, which also automatically includes the effect of reversing energy (backscatter).
The energy accumulated at the subgrid scales k.<k<2k. is removed by truncation (filtering) at
prescribed time intervals. In the physical space, the explanation for TNS is also
straightforward. In the traditional LES, the mesh size is A;pq =7/k., denoted as a coarse

mesh; while the TNS operates on a fine mesh with the size of Apyg =7/2k, = A;g/2 . Instead

of solving the LES equations on the coarse mesh, full Navier-Stokes equations are solved on
the fine mesh with a corresponding filtering operation in physical space. It should be
noticed that the filtering time interval plays a critical role in TNS. In order to avoid under-
dissipating or over-dissipating, appropriate interval must be carefully chosen (Domaradzki
& Yang 2004). The suitable interval depends on the filter type, grid resolution and flow
condition.
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Fig. 3.2. The sketch of TNS in spectral space.

Compared to other LES models, TNS does not have the closure problem because it has no
SGS term in the equation. It satisfies the Galilean transformation properties of the Navier-
Stokes equations. It is easy to implement with fewer empirical parameters and can be easily
extended to other types of turbulence without too much modification. When the explicit
filtering is used, the TNS model also shows its advantages over the other models. For
instance, as mentioned by Lund (Lund 1997), adaptation of the second explicit filtering leads
the SGS term actually to be

T =UU: —UU: . (311)

This is not Galilean invariant in most cases. In TNS, this problem is naturally avoided since
no such term exists.

TNS was tested in several different turbulent flows. Here only the results of the simplest
homogeneous, isotropic decaying turbulence are discussed. For this simple flow there are lot
of DNS and experiment data which can be used to test LES model. Here the DNS data of
Horiuti (Horiuti 1999) is used, which have a resolution of 2563. The initial condition for LES
is obtained from DNS by truncating the full 2563 DNS field to 323 in spectral space, see Fig.
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5.1. Notice the energy at the cutoff k=15 may not be small enough compared to the energy
peak. Usually for LES models in order to get good results, the energy at cutoff should be
two orders of magnitude less than the energy peak. The initial parameters are summarized
in Table 3.1

v Eo £ L A Re; | Re, et
1/720 0.686 0.152 0.51 0.24 245 118 0.68

Table 3.1. Initial parameters.

Fig. 3.3 shows the initial and final energy spectrum for TNS and DNS results. Note that in
order to compare the results of other LES models are also presented, including Smagorinsky
model and Chollet-Lesieur (C-L) eddy viscosity model (Chollet & Lesieur 1981). The C-L
model in spectral space can be expressed as

p (k) =" (k / k)[E(k.) /K] (312)
v* is the normalized eddy viscosity, which is defined as

v'(k / k) =Ko/2[0.441 +15.2exp(-3.03k. / k)] . (3.13)

where Ko is the Kolmogoroff constant, and is usually set to 1.4.
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Fig. 3.3. Initial and final energy spectrum for DNS, LES and TNS.

As we can see from Fig. 3.3, all models obtain reasonable results compared to DNS,
especially at low modes they match each other quite well. However at high modes TNS
spectrum matches the result of DNS best, and the k=5/3 spectral form is preserved. For
Smagrinsky model, as indicated by many studies, the dissipation is overestimated and
biggest. C-L shows good results but not as good as TNS. Fig. 3.4 shows the history of
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normalized energy decay for all models. Note here we simply divide the energy E(t) by the
initial total energy E(0) to get normalized energy. Again TNS gets the best results while the
Smagrinsky model shows too much dissipation.
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Fig. 3.4. The history of total energy decaying.

4. The choice of filters

The filter shape and filtering width are the two free parameters in LES. Each affects the LES
results greatly. Designing suitable filter type and filtering width is important to get
reasonable results. In dynamic Smagrinsky model and similarity model, the effect of the
filtering width has been studied by Lund (Lund 1997), De Stefano and Vasilyev (De Stefano
and Vasilyev 2002) etc. In order to separate these two effects from one another, the present
study is focus on the importance of the filter shape.

Theoretically, the filtering operation should be repeated every time step because the
nonlinear term continuously generates high frequency modes that need to be dissipated
(Lund 1997). Depending on the type of filter, the SGS model should be adjusted in order to
represent the dynamics of the unresolved scales correctly. Consequently the nature of the
LES solution strongly depends on the filter shape. But for the traditional LES, especially for
the eddy viscosity model, there is no explicit filtering process during the calculation in spite
of the reasons mentioned above, i.e., the simulation result is independent of the filter. In the
conventional practice, the filter has been only used as a concept (Frohlich & Rodi 2001). The
effect of the filter shape on LES is rarely discussed in the literature.

On the other hand, a suitable LES model is needed to test different filters. As just
mentioned, most traditional eddy viscosity models do not have explicit filtering in the
solution procedure. In the similarity models and the dynamical Smagorinsky model the
filtering width of the test (second) filter plays a key role besides the filter shape. A more
appropriate LES model, which can directly validate different filters, is therefore required.
From section 3.2 we found that the filtering plays a key role in TNS. The dynamics of the
large scales and the energy budget strongly depend on the filter shape. It is a very good
model to study the filter effect.

There have been many filters proposed in the literatures that can be categorized into two
groups: smooth filters and discrete filters. At the early stage of development, LES was mostly
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performed in spectral space in which the filters were defined as continuous in the whole
domain. These filters are referred to as smooth filters. The most commonly used ones are the
Tophat (box), the Gaussian, and the sharp spectral (Fourier cutoff) filters. Recently, the
application of LES to solve real engineering problems in the complex flow has become
realistic and, in fact, popular because of the urgent need from the industry. Finite difference
scheme instead of pseudo-spectral method is now widely adopted in the numerical
approach due to its flexibility in handling complex geometry and obtaining high order
schemes (Lele 1992, Visbal & Gaitonde 2002). The finite difference discretization scheme,
together with the limited grid resolution, can be seen as an implicit filtering as mentioned by
many researchers (De Stefano and Vasilyev2002; Frohlich & Rodi 2001; Lund 2003; Vasilyev
1998). However this kind of implicit filtering has some problems because of the interactions
among the modified terms in the governing equations, the numerical error, and the order of
the filter, etc.(Lund 2003; Vasilyev 1998). In order to avoid some of these problems,
researchers tend to employ the explicit filtering to exert direct influence on the simulation
result. These filters are usually defined on several adjacent points and, hence, denoted as
discrete filters thereafter. There are several advantages using explicit filter: First it is easier
to control the truncation and aliasing errors by removing the high wave number modes
which is beyond the bandwidth allowed by the mesh. Second it can dump the oscillation at
high frequency which comes from the numerical discretization scheme, boundary condition,
etc. The amplitude of these oscillations usually is comparable to or even larger than that of
the small scales after sufficiently long computation time, which tends to contaminate the
final result of the simulation. By using the same explicit filter, it also makes the comparison
with experiment or DNS data more direct.

4.1 Smooth filters

The smooth filters include the spectral filter, the Gaussian filter, the Tophat filter and those
are defined continuously in the whole computation domain. The definitions for the first
three can be easily found in some books (Pope 2000). Table 4.1 shows these filter functions in
physical and spectral space respectively.

Spectral space Physical space
Spectral filter é(k) = {3: i i ii' G(x) = Sm(:;C/A)
Tophat filter G(k) = 45&1(0.55&) G(x)= %' x| <054,
0.5kA 0, otherwise
Gaussian filter é(k) = exp(— k;iZ ] G(x)= \/Zexp[—ixjj

Table 4.1. Smooth filters in physical and spectral space A=z /k, .

The main problem for the Tophat and Gaussian filters is that they remove too much energy
of the large scales (Domaradzki et al 2002; Yang & Domaradzki 2004). The spectral filter is
thought as the best among these three for LES because it keeps all the large scales while
removes all the small scales. However filters defined in the physical space are much flexible
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because for most flows transformation to the spectral space is difficult. People are trying to
find a filter that is defined in the physical space while has the property of the spectral filter
or close to it at the same time.

Actually the filtering operation (2.1)(Leonard 1974) is a linear spatial averaging operation,

F() =La(f(0) = [, Glx,x5A8) f(x )’ “1)

A formal inverse of it in a power series expansion can be expressed as

Ll =(1-(I-Lg))  =I+(I-Lg)+(I-Lg) +-- 4.2)

where I is the unity operator. The product of Lg and the first few terms of the above
expansion (4.2) actually defines a suitable new filter (Domaradzki et al 2002) (the product of
Lg and the full equation (4.2) is equal to I, of course). If only first few terms are selected, the
new filter is close to the original filter Lg and the extra computation cost is small. When
more terms are selected, the new filter is closer to unity. It has less effect on the large scales
but needs much more computation time. Domaradzki et. al. (Domaradzki et al 2002) found
that the combination of the first three terms in Eq. 4.2 is the best choice and denoted this
filter as the physical filter

=»
>

i =30, - 30, + 1 (4.3)

where "V is the original Tophat filter or Gaussian filter. One thing need to be pointed out is
that the results of the Tophat, Gaussian and Physical filters strongly depend on the filter
width A . However the objective of present work is to highlight the importance of the filter
shape as mentioned above. In the following analysis, the filter width is fixed for these
smooth filters, which is equal to 2 times of grid size A .
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Fig. 4.1. Effect of the smooth filters on the k-5/3 spectrum.



40 Computational Simulations and Applications

The effects of above filters on the k-3 spectrum are shown in Fig.4.1. As can be seen, the
Tophat and Gaussian filters remove too much energy of the low modes. The spectral filter
only keeps the large scales. The physical filter strongly damps the small scales while
affecting the large scales very little, which make it a good filter for LES.

Beside a prior test, the effects of these filters on a real three dimensional LES are also
examined. Again the simplest homogeneous, isotropic decaying turbulence is utilized as the
test case with two different initial conditions. The first has the initial condition of spectrum

E(k)= Ak* exp(—Zk2 / k;) , where k; is the peak mode and equals to 4. The grid resolution is

643 (In the following, the mesh size is 643 for all LES unless further specified). For
comparison, the 2563 DNS result is also included. The final energy spectrum is plotted in
Fig. 4.2. It also shows that the Tophat filter removes too much energy (Since the Gaussian
filter performs very similarly to the Tophat filter, we did not include it in the figure). The
spectral and physical filters show very good agreement with the DNS data.
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Fig. 4.2. Energy spectrum at final time for LES case 1.

The second case has a more critical initial condition as shown in Fig. 4.3. The initial
condition is obtained from the 2563 DNS data of Horiuti (Horiuti 1999) same as section 3. It
is a challenging case for LES because the energy at cut-off mode k. is not in the inertial
range. The Tophat filter shows too much dissipation same as above. However the spectral
filter delivers some undesirable behaviors this time. By removing all the small scales, it also
shut down the energy transfer from the large to small scales completely. It will take some
time for LES to rebuild the nonlinear interactions between the large and small scales, which
leads to insufficient dissipation. Thus, the energy accumulates near the cutoff wavenumber
as shown in Fig. 4.3. The physical filter provides the best result compared to the DNS data
as also observed in paper ((Domaradzki et al 2002; Yang & Domaradzki 2004). The main
reason is that the physical filter keeps a small part of the small scales which facilitates the
energy transfer. Since this initial condition is a better case to test filters, we only run LES
with case two in the following discussion.
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Fig. 4.3. Energy spectrum at final time for LES case 2.

The history of total kinetic energy decay for the smooth filters is plotted in Fig. 4.4.
Corresponding to Fig. 4.3, the physical filter obtains better result compared to DNS. Since
the spectral filter does not provide sufficient dissipation as shown in Fig. 4.3, its total energy
is the biggest among all the results. The Tophat filter removes a part of large-scale energy
each time when the filtering operation is applied. That is why the total energy jumps
downwards periodically.
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Fig. 4.4. The decay of the total kinetic energy for the smooth filters.
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The effect of different grid resolutions is also investigated. The result of LES with grid 323 is
shown in Fig4.5 and the result for 1283 is plotted in Fig. 4.6. The behaviors of these smooth
filters in coarse mesh (323) are almost the same as those in grid 643. Physical filter still gets
the best results. For the fine mesh (1283), all filters obtain good result except that the Tophat
filter still dissipates a little more. The effect of the SGS model becomes small when the grid
resolution increases, which is well known.
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Fig. 4.5. Energy spectrum at final time for the smooth filters with grid 325.
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Fig. 4.6. Energy spectrum at final time for the smooth filters with grid 1285.
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4.2 Discrete filters

In order to handle complex geometry, finite difference scheme is widely used instead of the
spectral method. The solution is available only on a set of discrete grid points. At most time,
the filter for the whole domain does not exist due to the inhomogeneous and boundary
condition. The discrete filters, including the discrete Tophat filter, the Padé filter (Visbal &
Gaitonde 2002) and the filter series proposed by Vasilyev et al. (Vasilyev et al. 1998) are
utilized rather than the spectral smooth filters

The main problem of the discrete filter is the commutation error between differentiation and
filtering operation. Fortunately Vasilyev et al. (Vasilyev et al. 1998) gave out a solution
which can control the commutation error to any specified order. Another problem is that if
the order of the filter is too low, the error introduced by filtering may become larger than
the magnitude of SGS term. Hence for traditional LES, the filter order is usually required to
be higher than that of SGS term. But the filtering operation in TNS only acts as a dissipation
source. The numerical error can be included into it as part of the dissipation. Low order
filters can also obtain good results. It is similar to the strategy used by Mathew et al.
(Mathew et al. 2003).

A one-dimensional filter given by Vasilyev et al. (Vasilyev et al. 1998) is defined as:

_ L

fj = Z wlfj+l (44)
1=K

In order to control the commutation error to a specified order, the filter is required to have a

different number of vanishing moments. Correspondingly, the weight factors w; should

satisfy a set of constrains. These filters are referred as V-filters in the following analysis.

Case w3 Wy w_q Wo Wy Wy w3 Wy W
1 1/4 1/2 1/4
3 1/8  5/8 3/8  -1/8
6 /16 1/4 5/8 174 1/16
7 31/32  5/32  5/16  5/16 -5/32 1/32
9 /32 5/32  11/16  5/16  5/32  1/32

10 1/64 -3/32 15/64 11/16  15/64 -3/32  1/64
Table 4.2. The weight parameters of the V-filters.

Several sets of weights for the V-filters are given in Table 4.2 which is similar to the Table 1
in Vasilyev et al's paper (Vasilyev et al. 1998). The equation (4.4) defines a symmetric
(center) scheme if K equals to L. The case 1, 6 and 10 are symmetric and have a commutation
error of order 2, 4, 6 respectively. In order to handle boundary points, Vasilyev et al also
proposed several asymmetric filters, i.e., K and L is different. For high asymmetric V-filters,
such as the one side filter - case 7, it is found that too much unphysical energy is introduced
to the high modes as also mentioned by Vasilyev et al (Vasilyev et al. 1998). This property is
not desirable for TNS because it will lead to unphysical solution. Thus high asymmetric
filters (case 2, 4 5, 7, 8) are not included in the following analysis. Only case 3 and 9 (whose
order are 3 and 5 respectively) are tested as well as the symmetric ones.

Fig. 4.7 presents the filtering results of different V-filters applied to the k53 spectrum. For
comparison, the result of the smooth physical filter is also included. Case 1 in fact is a
discrete version of the Tophat filter using trapezoidal rule. Similar to the smooth one, it
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removes too much energy of the large scales. It is interesting that the asymmetric filters like
case 3 and 9 keep more energy than the symmetric ones (case 6 and 10). Note case 3 and case

6 still remove a small part of the large-scale energy. While

case 7 introduces too much

energy at high wavenumber modes which will lead to an unphysical solution in a real LES

run.
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Fig. 4.7. Effect of the V-filters on the k-5/3 spectrum.
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Fig.4.8 shows the final energy spectrum of the V-filters in the same homogeneous run as
Fig.4.3. As expected, case 1 dissipates too much energy. High order filters obtains better
results. Corresponding to Fig.4.7, the result of the low order asymmetric filter case 3 (3rd
order) is a little better than that of the high order symmetric filter case 6 (4th order). And the
behaviors of case9 and case 10 are very similar. The reason is still attributed to the fact that a
small amount of energy is introduced at high modes for the asymmetric filters. The decay of
the total energy is plotted in Fig.4.9. Except case 1, all other cases show good agreement
with the filtered DNS data. But there are small jumps for low order filters (case 3 and case 6)
because of the undesirable effect to the large scales as shown in Fig.4.7. The effects of grid
resolutions on V-filters are similar to the smooth ones, which are not included here.
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Fig. 4.9. The decay of the total kinetic energy for the V-filters.

Another series of discrete filters is the Padé filters. The Padé compact difference scheme can
be regarded as an implicit filter (Visbal & Gaitonde 2002; Vasilyev et al 1998). Based on that,
a set of Padé explicit filters is proposed by Visbal and Gaitonde (Visbal & Gaitonde 2002).
For a variable f, the filtered value can be expressed as:

N

afor+ Fitagfn= 2 2 fion fin) *5)
n=0

where ay is an adjustable parameters between (-0.5, 0.5) and high value of « ¢ means a less

dissipative filter. N is the order of filter scheme, 2N+1 points give a 2N order filter. The

coefficients a, are listed in Table 4.3.

The filtering results of the k-5/3 spectrum using different Padé filters are shown in Fig. 4.10.

The smooth physical filter is also included as a benchmark. The 2nd order filter removes a

small amount of the energy of the low modes, which may have undesirable effect on LES

because of the unnecessary dissipation. The 4th order and above have little effect on the
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Fig. 4.10. Effect of the V-filters on the k-5/3 spectrum.

Scheme ag a a as ay as
F2 %4—61]( %ﬂzf
5 3 1 1 1
F4 —+—a —+a ——+—a
8 4/ 2 8 4/
F6 E+§af E+Eaf _i+§af i_ﬁ
16 8 32 16 16 8 32 16
F8 93+70af 7+18af —7+14uf l_'Lf ;1+’Lf
128 16 32 16 8 128 64
F10 193+126af 105+302af 15(—1+2af) 45(1—2af) 5(—1+2uf) 1—2af
256 256 64 512 256 512

Table 4.3. The Coefficients of the Padé filters.

large scales. But higher the order is, the Padé filter tends to keep more small scales
compared to the physical filter. In turn it may not provide enough dissipation for TNS.

The final energy spectra of the LES run with the Padé filters are plotted in Fig. 4.11 and the
time evolutions of the total energy are shown in Fig. 4.12. Corresponding to Fig.4.10 the 2nd
order filter overestimates the dissipation and subsequently provides the worst results
among these runs. The 4th order and above show very good results as compared to the DNS
data. However the 6th order and above filters keep more small-scale energy than DNS
which may imply them do not provide enough dissipation.

From above results, it is found that the Padé filters show better results than the V-filters. It
could be attributed to the fact that the Padé filters consider the effects of adjacent points. On
the other hand, the calculation of the V-filters is much simple and straightforward. For the
Padé filters we need to solve a tri-diagonal system. It is time consuming and may be
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infeasible for the inhomogeneous case. In the Section 4.1 the physical filter shows very good
property but it is a smooth filter. So we modified it into a discrete version using the V-filters,
i.e. in equation 4.3 we use the V-filters instead of the Tophat filter. Hereafter we denote it as
PV-filter.
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Fig. 4.11. Energy spectrum at final time for the Padé filters.
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Fig. 4.12. The decay of the total kinetic energy for the Padé filters.
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The results of a priori test and the LES run of the PV-filters are shown in Fig. 4.13, Fig.
4.14 and Fig. 4.15 respectively. For comparison, we also include the result of the original
case 1 of the V-filter (V-casel) in Fig.4.13. It shows that the result of the 2nd order PV-
casel is improved significantly as compared to V-casel. As mentioned before V-casel is
actually a discrete version of the Tophat filter. Therefore the PV-casel is a discrete version
of the smooth physical filter. Since the result of smooth physical filter is much better than
that of the Tophat filter as shown in Fig.4.1, it is no wonder that the PV-casel is better
than the V-casel. However, by comparing Fig.4.14 and Fig.4.3, it was found the results of
this discrete version (PV-casel) are not as good as those of the smooth physical filter for a
real LES run. Similar to Fig.4.7, the asymmetric filters (PV-case3 and PV-case9) show good
behavior in Fig.4.13, keeping more energy than the symmetric ones (PV-case6 and PV-
casel0). But it was also found that small amount of nonphysical energy is introduced near
the cutoff wavenumber. Correspondingly the behaviors of these asymmetric filters in a
real LES run are not good as shown in Fig.4.14 and Fig.4.15 (PV-case3 is not shown in
Fig.4.14 because the energy spectrum becomes so large that it is out of the scope range).
The results of high order symmetric PV-filters are also improved compared to the original
V-filters, but not too much.
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Fig. 4.13. Effect of the PV-filters on the k5/3 spectrum.
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Fig. 4.14. Energy spectrum at final time for the PV-filters.
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Fig. 4.15. The decay of the total kinetic energy for the PV-filters.

5. The effects of numerical errors on TNS

For DNS, the numerical errors mainly are aliasing and truncation errors (Chow 2003). As for
LES, the small scales must be modelled because of the limited grid resolution which can not
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resolve all the scales. Therefore LES has an additional source of error comes from the SGS
models. In general, it is required that all the source of errors can not overwhelm the
contribution of SGS model in LES (Ghosal 1996; Chow 2003). In addition, unlike DNS the
cut-off mode in LES is still energetic. As a result, LES is more sensitive to numerical errors.
The numerical errors must be well controlled.

Note the numerical error in this section refers to aliasing and truncation errors introduced
by spatial numerical scheme. Usually time discretization also introduces some
computational errors (He et al 2004). Guo-Wei He etc studied the time correlation of several
SGS model on LES (He et al 2004). Here we only focus on the spatial discretization error. In
addition, the effect of the floating error of the computer is assumed to be small and ignored
thereafter.

5.1 DNS results

We conduct DNS run at first in order to avoid the effect of SGS model. Also DNS data can
provide benchmark for LES. The initial condition is the homogenous isotropic turbulence
same as section 3 and 4. The grid resolution is 128x128x128 which is found fine enough to
resolve the large scales for this simple flow. At Fig.1 the DNS results of 128% and 256° grid
are compared. It is clear shows that they have a very good match for low wavenumber
modes. In order to save computation time, only 1283 runs are carried out thereafter.
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Fig. 5.1. The result of 1283 DNS compared with 256.

As mentioned above, DNS only suffers from aliasing and discretization errors that depend
on the numerical scheme used. When spectral method is used, the discretization errors is
very small. So the numerical error is dominated by aliasing error. The main reason for
aliasing error arising is that the gird resolution is limited. The modes beyond the grid cut-off
wavenumber are incorrectly 'aliased' to wavenumbers that are resolved. Usually the
contribution of aliasing errors is largest at the highest wavenumbers where any energy
above the wavenumber cutoff incorrectly adds on the resolved spectrum. Without control,
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aliasing errors destroy the energy conservation and cause the solution to departure from
physical solution. Usually a random shift technology is used to eliminate aliasing error. In
order to identify the importance of aliasing error, we run two DNS: one uses anti-aliasing
technology (the result marked as Dealiased) and the other one does not (the result denoted
by Aliased). The simulation results are shown in Fig. 5.1. In Fig. 5.1a the energy spectrum at
t=1 (the upper line) and t=3 (the lower line) are shown. And Fig. 5.1b gives the relative value
of aliasing error, which is calculated as

G(k) = (E(k)dmlias - E(k)ulius )/E(k)dmlius (51)
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Fig. 5.2. The aliasing errors for DNS using spectral method.

As we can see, the aliasing error is relatively small for DNS with spectral method. The
largest error happens at high modes, which is consistent with the analysis of Park and
Mabhesh (Park & Mahesh 2007). The aliasing error can contaminate the low modes gradually
with time evolution, as shown in Fig.5.1, but it is still very small.

For complex engineering problem, the spectral method is no longer suitable. Finite
difference scheme or finite volume scheme is used instead. Same as section 4, the Padé
compact scheme is used here. In order to examine the truncation error of different order of
Padé scheme, one common used technology is to analysis the modified wavenumber in
spectral space (Lele 1992). Similar to aliasing error, Padé scheme has little effect on low
modes. The error is highest near the cut-off wavenumber. With higher order, the error is
smaller and the result is more close to spectral method.

In order to isolate the discretization error, here we only apply the Padé scheme to the
nonlinear term, which is similar to the way used by Kravchenko and Moin (Kravchenko &
Moin 1997). The reason is that nonlinear term has important impact on SGS term. Also
nonlinear term is a key factor which affects the stability of computation.

In Fig. 5.3 we compare the energy spectrum at different time for spectral method and
different order Padé schemes. While the time evolution of total kinetic energy is shown in
Fig. 5.4. As we can see, high order scheme, 6th order Padé scheme compares well with
spectral method at all time. But for 4th order Padé scheme, at the initial stage (t=1), it
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compares well with spectral method at low modes, but shows some difference at high
modes. The nonphysical energy introduced by discretization error accumulates at high
modes and affects low modes gradually with time developing (t=3)
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Fig. 5.3. The energy spectrum for DNS using different discretization schemes at t=1 and t=3
(from above to low).
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Fig. 5.4. The time evolution of total kinetic energy for DNS using different discretization
schemes.

Note that 2nd order Padé scheme actually is the 2nd order center difference scheme. It is
well known that it has the problem of even-odd oscillation which will leads to the
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computation diverging. We observe the same problem here. Usually an artificial viscosity is
needed to dump the oscillation, which is beyond the research scope of this article. In Fig.5.5
the energy spectrum before computation fail is shown. It is clear seen that the nonphysical
energy accumulates quickly at high modes which lead to the computation divergence. Park
and Mahesh (Park & Mahesh 2007) gave a detail description about this problem. Interested
reader should refer to their paper.
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Fig. 5.5. The time evolution of energy spectrum for DNS using 2nd order Padé scheme.

The results for Padé schemes shown in Fig. 5.3 actually contain all the numerical errors, i.e.
discretization and aliasing errors. Unlike spectral method, many researches thought that
finite difference scheme can automatically decrease the aliasing error and therefore no anti-
aliasing method is needed. Since the result of 6th order Padé scheme is the closest one to the
spectral method, here we also apply the same anti-aliasing technology as used in spectral
method to 6th order Padé scheme (denoted by Dealiased). The new result is then compared
with the original one as shown in Fig. 5.6. Compared to spectral method, the magnitude of
aliasing error does decrease. Note that actually it is very hard to isolate aliasing error from
discretization error. The aliasing error shown above is not the actual aliasing error for 6th
order Padé scheme. But anyway we can use that technology to determine the relative
importance of aliasing error.

In general, the aliasing error in DNS can be well controlled. The main error is the truncation
error of discretization scheme. Low order scheme is not suitable for simulation in some
cases.

5.2 LES results

For the same simulations above, we also run the LES. The mesh size is 64x64%64. Spatial
discretization adapts the same spectral and Padé compact schemes as in DNS. Note that LES
has additional numerical error source which comes from the SGS model besides the aliasing
error and discretization error for DNS. Again TNS approach is used to modelling the small
scales. TNS model depends on periodic filtering to remove high modes energy. There are
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Fig. 5.6. The aliasing error for DNS using 6th order Padé scheme.

many filters available as mentioned in section 4. Because we pay more attention to the
possibility of applying LES to real engineering problem, only discrete filters are adapted
here. Since Padé discrete filters show good results in section 4, we only focus on them to
simply the research. Note that different order of Padé filter means the error introduced by
SGS model is different.

In Fig. 5.7a, b, ¢, d it shows the final energy spectrum for spectral method and different Padé
compact schemes (marked with ‘d") combined with TNS model using different order Padé
discrete filters (denoted as ‘f’), i.e. “d6f4" means 6th order Padé compact scheme and 4th
order filter. As we can see, TNS model plays a key role in the simulations. Low order filter
provides too much dissipation and performs poorly for all discretization schemes. High
order filter (4th order and above) obtains good results compared with DNS. However higher
the filter order is, it keeps more high modes energy and thus dissipates less. In return it
decreases the performance of LES. TNS model with 4th order filter provides the best results.
Compared to DNS, LES is not so sensitive to the order of the discretization scheme. Even
2nd order scheme can obtain reasonable results. The result is not as good as of high order
scheme though, but much better than of DNS which diverges when using 2nd order scheme.
The reason is that the discretization and aliasing errors cause the energy to accumulate at
high modes; while TNS model removes high modes energy through filtering. The
dissipation provided by SGS model dumps the unphysical energy increment. This result
may help explain why low order scheme can obtain good results when applied to
engineering problem.

In order to further comparing the effect of different discretization scheme on LES, here we
run a series cases with the same TNS model (all using 6th order Padé filter) while the spatial
discretization uses spectral method and different order of Padé schemes. The results are
shown in Fig. 5.8 and Fig. 5.9. Similar to DNS, low order Padé discretization scheme leads
energy to accumulate at high modes. Higher the order is, the result is more close to DNS.
The spectral method is the best one. But different form DNS, low order (2nd order) scheme
obtains reasonable result and does not cause divergence like DNS case in Fig. 5.5. It is
because the TNS model removes the unphysical energy accumulated at high modes and
thus dumps the discretization error.
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Fig. 5.7. The final energy spectrum for LES using spectral method, different order Padé
schemes and TNS models.
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Fig. 5.9. The time evolution of total energy for different discretization scheme with the same

TNS model.

Same to Fig. 5.6, we also try to investigate the effect of anti-aliasing method on the final
results (only the case using 6th order Padé scheme, 6th TNS model is considered). The
comparison is shown in Fig. 5.10. The aliasing error is still small. But for LES the energy at
cut-off wavenumber is considerable large compared to DNS, the relative value of aliasing
error increases.
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Fig. 5.10. The aliasing error for LES using 6th Padé scheme and TNS model with 6th order
filter.

6. Conclusion

In the past ten years significant progress has been made in the LES technology. LES has
become one of the most promising and successful methodology available to solve the
complex turbulent flows. However there are still some challenges before LES can be a
mature tool to predict engineering problems, including reliable subgrid scale model, the
choice of filter, near-wall treatment, numerical errors etc. And an accurate, fast and robust
numerical algorithm for complex geometry is also needed. In this article, three key issues of
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LES, namely the SGS models, the choice of filters and the effects of numerical errors, are
investigated briefly.

The TNS approach is a simple and promising model. It actually is a DNS run with periodic
processing of high modes. The basic assumption in TNS is that dynamics of small scales are
strongly determined by the large eddies and the contribution of small scales to large scales
are mostly contained within wavenumbers that are twice that of the cut-off wavenumber. By
periodic removal of high mode energy using a filter, TNS provides necessary dissipation for
small scales and thus avoids energy accumulation at high wavenumbers. It provides natural
dissipation mechanism for low modes by nonlinear interactions between low modes and
high modes at the cost of doubling the mesh. It can be expended to other flow easily because
it does not have any empirical parameter.

The filtering operation plays a key role in TNS. It is responsible for removing the
accumulated energy of the small scales at prescribed intervals. The filter type has direct
effect on the final simulation results. Here a set of smooth filters and discrete filters are
tested using TNS model. For the smooth filters, the physical filter is implemented in the
physical space while it has similar property to the spectral filter at the same time. Also it
keeps a part of the small-scale energy, which benefits the energy transfer. The Tophat and
Gaussian filters are easy to implement but have serious undesirable effects on the large-scale
energy. The discrete Padé filters exhibit advantages over the V-filters because the effect of
adjacent points can be taken into account. The Padé filters can keep most of large-scale
energy while maintaining sufficient amount of the small-scale energy at the same time. They
show very good performance in all the runs, even better than the smooth physical filter.
However the second order Padé filter still has effect on the large scales and the high order
ones tend to keep too much small-scale energy, both of them may decrease the performance
of TNS. The V-filters can be easily implemented to any specified order. However, high
asymmetric filters should be avoided because they introduce too much nonphysical energy
at high modes. The second order symmetric V-filter is actually a discrete version of the
Tophat filter. It has the same problem as the smooth one, i.e., removing too much large-scale
energy. When the smooth physical filter idea is applied to the V-filters, the results for the
low order V-filters are improved significantly, but it is not necessary for high order V-filters.
Note that the filter type should be adjusted according to the SGS model. So for LES with
other SGS models, the effect of filters may be different.

The effects of numerical errors on LES are investigated briefly here, including discretization
error, alias errors as well as SGS model error. As for DNS, no matter using spectral method
or Padé compact scheme, the aliasing error can be well controlled. The final result is more
affected by the truncation error of discretization scheme. High order scheme is preferred.
Low order scheme is not suitable in some case. For example in our simulation, 2nd order
discretization scheme leads energy to accumulate at high modes quickly and causes the
solution unstable. As for LES, the interaction between numerical error and SGS model is
complicated. Different model, such as TNS with different order filtering, can have different
results. Low order filter brings in too much dissipation which is not a suitable property for
LES; while the dissipation provided by high order filter is too small which also decreases the
performance of TNS model. High order discretization schemes (4th order Padé scheme and
above) plus middle order filters (4th or 6th order) can obtain good results compared with
DNS. A more advantage is that TNS model not only avoids the small scales energy
accumulating, but also dumps the side effect of discretization and alias errors to the high
modes because TNS model removes the high modes energy periodically by filtering. This
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interaction between TNS model and numerical error benefits LES. So low order
discretization scheme plus a more dissipative TNS model can get good enough result. In
addition, the energy at cut-off wavenumber for LES is still relative large, so the effect of
aliasing error increases. We have to admit that due to the time and our knowledge
limitation, the study on the numerical error is not full enough. There are some excellent
works by other researches available.
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1. Introduction

The quest for understanding the mechanisms responsible for the vortex shedding process
comes from past decades, but it is still challenging. The turbulent wake downstream of bluff
bodies induces alternating and dynamic loads in the bodies like (antennas, chimneys,
suspended bridges, a set of risers and structures in general). These structures can produce
disastrous results. Extrapolating the scale of the phenomena, one can refer to petroleum
exploration, which starting from the platforms to the seabed, there are risers that are
cylindrical tubes of great length. They are subjected to ocean currents and suffer fluid-
dynamic effort. The consequence is that the phenomenon as fatigue and wear are
accelerated, reducing the useful life of equipment and could lead them to collapse.

Thus, the study of problems involving immersed bodies is motivated by great technological
challenges, both within the academic and industrial environment. Fluid-structure
interaction is today one of the crucial problems in various areas of mechanical and civil
engineering, because of the necessity of extensive structures subjected to fluid-dynamic
random efforts. Therefore, it is important to appreciate the great importance of the study of
flow around stationary circular cylinder in order to extrapolate to moving bodies or to set of
moving bodies. This is a model, used to simulate, for example, a set of risers. We also
emphasize the importance of such studies, including transition and turbulent flows, in order
to better approximate the real conditions.

In the context of fluid mechanics, the study of fluid flows and how they interact with solid
materials has been of great interest in various fields such as civil and mechanical
engineering, meteorology and environment. In recent decades, great efforts have been made
for the development of new numerical methods to analyze the wide range of problems in
fluid mechanics, as well as improving existing ones. The Computational Fluid Dynamics has
been considered an interesting tool to simulate various problems of practical interest in
engineering. The literature shows different computational methods with several techniques
to solve differential equations aiming to accuracy of results. Different numerical methods
developed for the study of flow in the presence of immersed bodies are basically divided
into techniques based on the immersed boundary method, and those based on meshes that
are able to adapt to the immersed body inside the flow. However, there is no method that
can be considered absolutely superior to others. The choice of the most appropriate method
should be made case by case, taking into account the specific characteristics of the focused
problem.
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The Immersed Boundary Method (IBM), due to their capability to deal with problems of
complex and mobile interfaces, becomes attractive, especially in cases involving large
displacements. In the modeling process of physical problems, the equations that govern the
physics of the problem appear naturally. These models can range from those involving only
one differential equation to those involving a system of differential equations, which can be
fully coupled. However, in most cases, exact solutions can not be obtained and numerical
methods appear as a tool to solve these problems. The Immersed Boundary method is used
here with the Virtual Physical Model in order to simulate two-dimensional incompressible
flows over stationary, rotating and rotationally-oscillating circular cylinders. Different time
discretization methods are used: first order Euler scheme and the second-order Adams-
Bashforth and Runge-Kutta schemes. The sub-grid Smagorinsky model and a damping
function are also used. Considering the existence of a mistaken view about the mentioned
numerical methods, their stability analyses are made in the present work. The results are
compared with numerical and experimental results obtained from the literature.

2. Mathematical modeling

The mathematical model that describes the flow consists of a set of coupled differential
equations representing the physical phenomenon for which we want the solution. The
literature has shown that only a fraction of practical problems can be resolved due to the
complexity of the equations. Thanks to high-performance computers and numerical
methods, the solution of several problems becomes possible. The formulations of the
Immersed Boundary Method and Virtual Physical Model are briefly presented.

2.1 Immersed boundary method

The Immersed Boundary Method (Peskin, 1977) along with the Virtual Physical Model
(Lima e Silva et al., 2007) are used to solve two-dimensional, incompressible, isothermal and
transient flows. It is based on the motion equations plus a force term which model the
interface. Thus, it becomes necessary to use two formulations: one for the fluid (Eulerian
fixed mesh) and another for the immersed interface (Lagrangean mesh). These meshes are
geometrically independent and coupled through the force term.

2.1.1 Mathematical formulation for the fluid
The Navier-Stokes equations, Eq. (1), and the continuity equation, Eq. (2), for a Newtonian
fluid, are presented below using the tensor form:
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where p [kg/m3] and v [m2/s] are respectively the specific mass and the kinematic
viscosity, properties that characterize the fluid. The variables of interest are represented by:
the velocity components u; [m/s], the pressure p [N/m?] and the components of the
Eulerian force acting on the interface f; [N/m3]. The force term only exists in Eulerian
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points coincident or close to the Lagrangean mesh, being zero for the remaining points of
the calculation domain. This term is calculated by distributing the components of the
Lagrangean interfacial force vector, using a distribution function (Peskin & McQueen, 1994):

f(x):Zk:D,—j(x—xk)F(xk)ASZ(xk) (3)

where f (x) [N] is the Eulerian force vector, x [m] and x;, [m] are respectively the position
vectors of Eulerian and Lagrangean points, AS [m] is the arc length centered on each
Lagrangean points, F(x,) [N]is the interfacial force calculated by the IBM and D;; [m?]is
a interpolation/distribution function, which properties are the same of the Gaussian
function.

2.1.2 Mathematical formulation for the immersed interface — Virtual Physical Model
(VPM)

The VPM allows the calculation of Lagrangean force based on physical interaction of the
fluid and immersed solid surface in the flow. This model is based on applying the balance of
momentum quantity over the fluid particles located at the Lagrangean points. The equation
that determines this force is expressed as:

oV(x,,t
E(xo ) :p%+pV(V(xk,t)V(xk,t))—,uV[VV(xk,t)+VTV(xk,t)}-Vp(xk,t) @
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where F, [N]is the acceleration force, F; [N] is the inertial force, F, [N] is the viscous force

and F, [N]is the pressure force.

2.2 Turbulence model

Turbulence is one of the most challenging problems of modern physics and is among the
most complex and beautiful phenomena in nature. Due to several practical implications for
many sectors, the number of research related to understanding and controlling these flows
has increased. The turbulence effects can be modeled and simulated since emprirical
correlations and diagrams up to modern methodology of numerical simulation.

2.2.1 Turbulence equations

It is known that even for flows controled by moderate Reynolds numbers, it is not possible
to solve directly all frequencies present in a turbulent flow. Reynolds (1894) proposed a
decomposition process of the Navier-Stokes equations in a mean and floating part in order
to solve the turbulent flow. The decomposition process of the scales yielded two groups of
equations for the turbulence, the first being called Reynolds Averaged Navier-Stokes
equations, and another called the filtered Navier-Stokes equations (Smagorinsky, 1963).
After applying the filtering and the decomposition process and applying the definitions in
Egs. (1) and (2), we obtain the following equation:

@+ 8(@‘%’) - _1ap*+a|“/6f [6l{1+au]]:|+fz (5)

ot Ox; p ox;  Ox; ox; 0x;



64 Computational Simulations and Applications

p*:ﬁ+§pkand Ve =V HY, (6)

where v, is the turbulent viscosity.

2.2.2 Sub-grid modeling and large eddy simulation

The sub-grid models are suitable for the calculation of turbulent viscosity. The sub-grid
Smagorinky model used here is based on the assumption that the production of sub-grid
turbulent stress is equal to the dissipation. The turbulent viscosity is a function of strain rate
and the length scale and is expressed as:

v, =(Cst)* 25,5, 7)
where (¢ is the characteristic length, Sl-j is the strain rate, C, is the Smagorinsky constant.
Large eddy simulation allows us to obtain three-dimensional and transient results using the
motion equations, as well as to simulate flows at high Reynolds numbers with the use of
refined meshes. Like any methodology, the sub-grid model has some disadvantages, such as
adjusting the constant in accordance with the problem, deficiency in modeling phenomena
involving energy transfer from small scales to larger scales and disability in the calculation
of viscosity near the walls, which may require the use of wall laws.

3. Numerical methodology

It is important to appreciate that numerical analysis of a two-dimensional flow is possible
since that determine the values of the interest variables at discrete points. The result of a
discretization process are finite difference equations, which are written for each point in the
domain that we want to solve. After solving these equations, the approximated solution of
the problem is found. As the number of grid points becomes large, the solution of
discretized equations tends to the exact solution of the corresponding differential equation.

3.1 Fractional step method

The Fractional Step Method (Chorin, 1968) with displaced meshes for the coupling between
the pressure and velocity fields is used here. This arrangement allows greater facility on
discretization, without the need of mean calculus, because the velocity components are
positioned on the face of control volume. Moreover, this arrangement provides more
stability in the pressure-velocity coupling.

As the flow is incompressible, the pressure is no longer a function of specific mass, that is
constant, ie, is not a function of the thermodynamic pressure of the fluid. The Fractional
Step Method is a non-iterative method, where, from the force, velocity and pressure fields of
the previous iteration, we estimate the velocity components fields. With these estimated
fields, we calculate the pressure correction, through the solution of a linear system, by
Modified Strongly Implicit Procedure (MSI) (Schneider & Zedan, 1981). The pressure acts as
a Lagrange multiplier in minimization problems. The importance of the Poisson equation

for pressure correction is that it makes the connection between the equations of motion and

continuity. Provides values of p that allow that the values of velocities components, u"*!

"1 obtained from the respective Navier-Stokes equations, satisfy the mass conservation
attime n+1.
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The spatial discretization is performed using the second order centered finite difference
scheme and the time discretization with the first order Euler method, Adams-Bashforth and
Runge-Kutta, both of second order.

3.2 Time discretization methods
It is presented, then, a brief description of the time discretization methods used here,
already making an analogy with the motion equation.

3.2.1 Euler method
It is a first-order method for solving transient problems. With this method the time

derivative % can be approximated by:

g

1 A n n n n
= flu ) =B+ ®)
where f includes advective and diffusive terms of the motion equation. The index 7, is
related to time and Af is the time step. This method is easy to implement, but requires the
use of small time step to ensure the stability of the solution. The terms P and F" are the
pressure gradient and force field, respectively in the i direction. The term i is an estimate

of the velocity inherent of the coupling method used.

3.2.2 Second order Adams-Bashforth method

It is a multi-point method, where the velocity fields at the current time is obtained using
information from two previous time instants. In other words, the advective and diffusive
terms in n and n—1 are needed for the calculations in time n+1. Multipoint methods are
easy to be implemented and require only an evaluation of the derivatives by time step,
making them relatively inexpensive. The main disadvantage of these methods is that as they
require information on previous points, they can not be started by themselves. For this
purpose, we use the Euler method for initial calculus. For i component of the estimated
velocity, this method can be represented by:

~n+l _
i

At

R G T R ®

3.2.3 Second order Runge-Kutta method

It is a single stage method, ie, to determine /"' , one needs only the information available
at the previous time u;’, u} . In this method or in the superior orders the function in one or
more additional points should be calculated. The first step until the middle of interval can
be regarded as a predictor step, based on the explicit Euler method, which is accompanied
by a correction to the end of the range. In summary, this method needs of information
calculated only on the last time. Moreover, it requires the calculation of the function
f (u?,u?) twice and thus consumes more time. For the i component of the estimated
velocity, this method can be represented by:

Predictor step:



66 Computational Simulations and Applications

wk
~ 9 n
U; —Ui _ non n n
T_f(”if”j)_lji +F (10)
2
Corrector step:
ﬁ”+1 _ un n+% n+E
i - ~ ~ n n
IT'—f U <,u; < |- +E (1)

4. Problem description

Stability analysis of the second order spatial centered scheme with the time discretization
schemes is performed by two-dimensional simulations of incompressible flows around a
stationary circular cylinder. The rectangular domain is chosen to be 154 x30d with the
cylinder located at 16.5 cylinder diameters from the inlet as illustrated in Fig. (1). The time
step used in all simulations is 0.0001 s.

30d

16.5d

15d |

Fig. 1. Schematic illustration of the calculation domain.

The flow develops from the bottom to top and the boundary conditions for velocity are : in

the inlet: u=0ce¢0v=V, in the outlet: a—u = a—u =0 and in the lateral boundaries:

ou ov - . . op .

™ = = =0. For the pressure, the boundary conditions used are: in the inlet: ——=0, in the
X Ox

outlet and in the lateral boundaries: p=0 .
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4.1 Analyses of the grid refinement

For these simulations three grids are used, which are shown in the Tab. (1), along with the
three time discretization schemes. It is observed through the mean values of drag
coefficients (Table 2), the similarity of results when different time discretization methods
were considered and the same grid refinement. Considering the various refinements, it is
noted that with the coarser grid the destabilization of the flow occurs more slowly. With the
grid refinement, which filters the instabilities of high frequency, the transition of the flow is
faster. It is also observed that with the grid refinement from the grid 2 to grid 3, the mean
values of drag coefficients are approximately the same, which leads to the independence of
the results for finer mesh than 125x250. The Sthouhal number, obtained by Fast Fourier
Transform (FFT) of the lift coefficient signal is also shown in Tab. (2) for Reynolds number
100.

Grid Points number Method
1 62x124
x Euler
2 125x250 Adams-Bashforth

3 2505500 Runge-Kutta (R-K)

Table 1. Grids used for the three time discretization schemes, Re=100.

Re=100

Grid 1 2 3

Method | Adams | Euler | R-K | Adams | Euler | R-K | Adams | Euler R-K

Cy 141 141 1.41 1.38 1.39 1.38 1.38 1.38 1.38

St 0.12 012 | 012 0.15 0.15 0.15 0.15 0.16 0.16

Table 2. Mean values of drag coefficients and Strouhal number for the three time
discretization methods and different grids.

Note that the mean values of the drag coefficient decreases with grid refinement for the
three methods. No significant difference is observed when passing from the intermediate to
the most refined grid, as mentioned previously. These results are also visualized through
the time evolution of the drag coefficient, Fig. (2), which presents the different grid
refinement for each of the time discretization methods.

4.2 Stability of the time discretization schemes increasing the Reynolds number

For this analysis, simulations are carried out with the different time discretization methods
mentioned and Reynolds numbers of 100, 300 and 1,000. For these simulations the grid is
composed by 125x250 points, once, as analysed, the grid refinement did not alter
significantly the inherent characteristics of the flow as the drag coefficient. Moreover, the
cost of grid 3 is greater.
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Fig. 2. Time evolution of the drag coefficient for the three grid refinement, at Re=100. Euler
(a), Adams-Bashforth (b) and Runge-Kutta (c).

For Re=100, it is noted that the results are identical both qualitatively and quantitatively for
the three time discretization methods (Fig. (2)). Again it is illustrated that the transient
regime, with instabilities, appears later for the coarse grid (grid 1). For this grid, the start
time of the instabilities formation is 150, while for the grids 2 and 3, this time is 75. Another
interesting fact is that the drag coefficient oscillations is more pronounced for grids 2 and 3.
This is due to the fact that the vortices are formed closer to the cylinder.

Increasing the Reynolds number from 100 to 300, it is found that the flow becomes more
unstable, appearing instabilities and the drag coefficient decreases. Such instabilities can be
related to the centered scheme of spatial discretization, where for this Reynolds number, the
nonlinear effects become important. Figure 3 shows the time evolution of the drag and lift
coefficients for the Euler, Adams-Bashforth and Runge-Kutta methods. There is a small
difference in the results obtained with Euler's method when compared with the others two.
When observe the lift coefficient in Fig. (3b) we see that the oscillations amplitude for Euler's
method is larger than the amplitude of the signal for the others methods. This shows that
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the coupling of the spatial centered scheme with a second order temporal scheme makes the
method more stable (Ferziger, 2002).

With further increase of Reynolds number for 1,000, there is an increase in the numerical
instabilities in the three methods, being more pronounced in the Euler and Runge-Kutta
methods. These instabilities were already expected once a turbulence model is not being
used. Being the spatial discretization scheme, centered and without numerical diffusion, it is
natural that the calculation becomes unstable, leading to divergence as seen through the
time evolution of the dynamic coefficients in Fig. (4).
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Fig. 3. Time evolution of the drag (Cy) (a) and lift (C;) (b) coefficients at Re=300, for the three
time discretization methods.
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Fig. 4. Time evolution of the drag (Cs) (a) and lift (C;) (b) coefficients, at Re=1,000, for the

three time discretization methods.

It is important to appreciate that for a high Reynolds number the turbulence model is
needed to ensure that the kinetic energy of turbulence is carried by the wave number or
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cutoff frequency. The apparent convergence given by the Adams-Bashforth method can be
misleading as will be seen in the item 4.3. It is noteworthy that the spatial centered schemes
have no numerical viscosity, as in the case of upwind schemes, which are stable without
turbulence model, even at high Reynolds numbers. The following are presented the
simulations results with sub-grid Smagorinsky modeling, needed to ensure the stability of
the methodology as previously commented.

4.3 Simulations with the sub-grid Smagorinsky modeling

The motion equations are sufficient to model flows in any regime and for any value of
Reynolds number. However, as the Reynolds number increases the energy spectrum
associated with the flow becomes wider, making it necessary the use of grid extremely fine,
which implies high computational costs. Thus, with the use of coarse grids, the grid filtering
process will eliminate all high frequencies providing only the low frequencies, hence the
restriction on its use, without additional turbulence modeling. It is observed in Fig. (5) that
even for the most stable method, Adams-Bashforth, for high Reynolds number (Re=10,000)
the calculation diverges without turbulence modeling.
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Fig. 5. Time evolution of the drag coefficient (C4) (a) and of the lift coefficient (C) (b); both
without and with turbulence model, Re=10,000.

4.4 Simulations with damping function

Figure 6 shows the flow visualization, through the instantaneous vorticity fields, for the grid
of 250x500 points, using the damping function in the outlet of the domain. It is noted for the
case without damping function, Fig. (6a) that the wake vortex presents an unusual behavior
for two-dimensional flows, which can lead to divergence of the calculations. With the
damping function, Fig. (6b), the calculation becomes more stable even at greater times of
simulations. The damping function aims to remove the vortices in the outlet of the
calculation domain, thus enabling the application of the boundary condition of the
developed flow. This function eliminates the input of mass at the domain outlet that occur
due to the vortices rotation. As verified in the presented results the second order spatial
centered scheme with the second order time discretization scheme may be perfectly used for
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simulations at high Reynolds number since the turbulence modeling and the damping
function is also applied to ensure the stability of the methodology.

@) (b)

Fig. 6. Instantaneous vorticity fields for Re=10,000, Adams-Bashforth; without damping
function (a), with damping function (b).

5. Applications of the immersed boundary methodology

Firstly, are presented, simulations’results of flow over a pair of cylinders of the same
diameter, following by the results of rotating and rotationally-oscillating cylinder.

5.1 Flow around two circular cylinders in tandem configuration

One of the main applications of this type of study is to obtain a better understanding of the
flow around a set of risers, which is subject to shear flows by ocean currents. The flow
interference over bluff bodies is responsible for changes in characteristics of the fluid load
that acts on immersed bodies. Consequently, the study of cylinders pair even in two-
dimensional simulations has received considerable attention both from the standpoint of
academic and industrial fields. In addition, flow over circular cylinders involve different
fundamentals dynamic phenomena, such as boundary layer separation, shear layer
development and vortex dynamic (Akbari & Price, 2005).

The configurations with a cylinders pair in tandem and side by side are the most extensively
discussed in the literature (Sumner et al., 1999; Deng et al., 2006; Silva et al., 2009), although
the form more general is the staggered configuration ( Sumner et al., 2008; Sumner et al.,
2005; Silva et al., 2009). According to the literature, there are various interference regimes,
which were based on flow visualization in experiments. The wake behavior of two cylinders
can be classified into groups according to the pitch ratio between the cylinders centers by
diameter (P/D) (Sumner et al., 2005).

Here, the two cylinders have equal diameters d and the distance center to center of the
cylinders, is called L. The cylinder A is located upstream and cylinder B is located
downstream of the inlet. In all simulated cases, the two cylinders are disposed such that the
minimum distance from the surface of each cylinder to the end of the uniform grid region is
1.25d in the x direction and 2d in the y direction as shown in Fig. (7). The non-uniform grid
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region is composed by 600x300 points, the Reynolds number equal to 39,500 and the pitch
ratio equal to L/D=2.

1.25d cylinder B
—»> [ e
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50d

Fig. 7. Illustrative scheme of the distance from the cylinder surface to the uniform region
boundaries.

5.1.1 Instantaneous vorticity fields

Figure 8 shows the flow visualization through the instantaneous vorticity field after the flow
has reached steady state. It is noted that the shear layers originated from the surface of the
upstream cylinder surrounding the downstream cylinder, forming a single wake behind the
cylinder B. It is also noted, that the vortex wake oscillates around the symmetry line of the
domain. The interaction between the two layers occurs only behind the downstream
cylinder, which is within the wake of the upstream cylinder. For this case, the '2S' vortex
shedding mode compose the wake. It is important to appreciate that for this pitch ratio and
geometrical configuration, the two cylinders behave as a single body.

According to Naudascher & Rockwell (1994) no detectable vortex shedding behind the
upstream cylinder occur, for L/D<3.8. Also according to these authors, as the spacing
between the cylinders increases, vortex shedding occur in the upstream cylinder with a
frequency that gradually approaches to the frequency for a stationary cylinder. Deng et al.
(2006), in they work at low Reynolds number (Re=220), concluded that for two-dimensional
simulations, each cylinder will produce a vortex wake only for L/D > 4.0, with no vortex
shedding between the cylinders for L/D<3.5. They also affirmed that even in three-
dimensional flows, for this configuration and L/D<3.5, the flow is equal to the two-
dimensional.

Fig. 8. Instantaneous vorticity field for L/D=2 and Re=39,500.
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Figure (9a) shows the time evolution of the drag coefficient of the upstream (A) and
downstream (B) cylinders and Fig. (9b) shows the time evolution of the lift coefficients. It is
verified that the drag coefficient on the cylinder B is considerably smaller than the cylinder
A, with mean close to zero. This can be understood by the fact that the cylinder B is inside of
the upstream cylinder wake. The fluctuations of the lift coefficient of the two cylinders have
zero mean, as shown in Fig. (9b). The amplitude obtained for the cylinder B is
approximately seven times greater than the amplitude of cylinder A. The absence of vortices
behind the upstream cylinder minimizes the lift fluctuations. Note also that the both
fluctuations are in phase, Fig. (9b). This is consistent, once the vortices that are formed and
transported induce forces on both cylinders simultaneously.
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Fig. 9. Time evolution of the dynamic coefficients for Re=39,500 and L/D=2: a) drag
coefficients and b) lift coefficients.

5.2 Flow around a rotating cylinder

The flow dynamics around a rotating cylinder is different from that observed for a
stationary cylinder. The rotation of a cylinder in a uniform viscous flow modifies the
vortices configuration and probably has an effect on flow-induced oscillations. As the
cylinder rotates the flow is accelerated in one side and decelerated in the other side. This can
be attributed to viscous effects injected by the cylinder on the flow. Therefore, the pressure
on the accelerated side becomes smaller than the pressure at the decelerated side resulting
on a lift force, transverse to the flow. In recent years more attention has been given to
control the wake formed behind the cylinder, especially in order to suppress the vortices
with the use of active or passive controls. The rotating motion of an immersed body can
suppress partially or totally the vortex shedding process, so that the wake separation on one
side of the body, be displaced from the axis of vertical symmetry.

5.2.1 Comparison of results

Aiming to compare the present results with the literature, simulations were carried out at
low Reynolds numbers, which are 60, 100 and 200. For this simulations, the grid is
composed by 200x125 points, refined over the cylinder (twenty grids per diameter) to ensure
good accuracy in the results. The rotating moviment is imposed clockwise around its axis



74 Computational Simulations and Applications

and is achieved by the imposition of the velocity components in each Lagrangean point.
Figure 10 shows the amplitude of the drag and lift coefficients in function of the specific
rotation o (the ratio of the tangential velocity and free-stream velocity) compared with the
numerical results of Kang et al. (1999), for Re=60 and Re=100.
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Fig. 10. Fluctuations amplitude of the dynamic coefficients: a) drag and b) lift. Full symbols:
present work and empty symbols: Kang et al. (1999).

Note that the drag coefficient amplitude, Fig. (10a) increases until given a and then
decreases, reaching a near-zero amplitude. Note also that the amplitudes increase with the
Reynolds number and the rotation in which the amplitude decreases is different for each
Reynolds number. For Re=60, the amplitude of the drag is reduced for 0>1.0 and for Re=100
and Re=200, the reduction occur for a>1.5. On the other hand, the amplitude values of the
lift coefficient, Fig. (10b), shows small variations for o< 1.0, for all Reynolds numbers and
then decreases, tending to zero. As observed, there was good agreement between the
present results with those of Kang et al. (1999).

5.3 Flow over a rotationally-oscillating circular cylinder

For the stationary cylinder at low Reynolds numbers, it is known that the vortex wake is
aligned and symmetrical about the central axis of the flow. The behavior is not verified
when the cylinder is subjected to rotationally-oscillating moviment around its own axis. The
mutual interaction between cylinder moviment and the adjacent fluid modifies the pattern
wake of the flow through the acceleration and deceleration of the flow around the cylinder.
Thus, there is a transition between different vortex shedding modes as the relationship
between oscillation frequency and the vortex shedding frequency for the stationary cylinder
varies for the same amplitude A. Commonly, some authors present two different flow
regimes, being the no lock-in regime and the lock-in regime (Cheng et al. 2001a, 2001b).
According to Lohner & Tuszynski (1998), the flow around a rotationally-oscillating cylinder
is a forced oscillator form, or a nonlinear system, that in some cases, can become chaotic.
Here, the rotationally-oscillating cylinder is started impulsively from rest and the tangential
velocity on the cylinder is given by the expression:

Vi, = @R = Asin(27f )R, (12)
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where @is the angular velocity, A is the oscillation amplitude, R is the cylinder radius, f. is
the oscillation or imposed frequency and t is the physical time. The simulations were
performed for Reynolds number equal to 1,000, the non-uniform grid is composed by
400x125 points and the turbulence model and damping function in the outlet of the domain
were applied.

5.3.1 Different vortex shedding modes

In Fig. (11) the flow visualizations are presented, through the instantaneous vorticity fields
for the dimensionless time equal to 200, at different amplitude values and frequency ratios.
Figure (11a) corresponds to the stationary cylinder. Figures (11b) and (11c) correspond to
A=1, for f./f,=1.05 and f, / f,=2.5 respectively. Figures (11d) and (11e) correspond to
A=2,for f./ f,=05 and f./ f, =25 respectively. Figures (11f), (11g) and (11h) correspond
to A=3, for f./f, =05, f./f,=25 and f,/ f, =6.0 respectively. It is observed that there
are different vortex shedding modes, when the same amplitude and different frequency
ratios are considered.

In Fig. (11a), corresponding to the stationary cylinder, as already mentioned, there is the
classical Von Kérman Street, represented by the classical '25' vortex shedding mode. This
mode indicates the generation of a positive vortex in one side of the cylinder and a negative
vortex on the other side, at each oscillation cycle, forming a single vortex wake with
displaced vortices around the symmetry line of the flow. In Fig. (11b), f./ f, =1.05, the
vortex wake is similar to pattern wake ('2S' mode), however, the vortices are presented more
rounded and with smaller longitudinal and transversal spacing between them when
compared with Fig. (11a). Increasing the frequency ratio to f./ f,=2.5 and keeping the
amplitude A =1, Fig. (11c), there is a new vortex shedding mode called 'P+S'. This mode
corresponds to a pair of vortices and single vortex composing the wake. Pairs of vortices
having opposite signs are located at the inferior side of the central line of the flow, while the
single vortices are released at the superior side of the cylinder.

For f./ f,=0.5 and A=2 it is also observed a new vortex shedding mode called 2P ', which
corresponds to pairs of vortices of opposite signs along the wake. Keeping the same
oscillation amplitude and increasing the frequency ratio to f./ f, =25, Fig. (11e), it is
noted the same vortex shedding mode of the previous case, Fig (11d). Interesting to note, in
this case, that the pairs are disposed symmetrically about the centerline of the flow forming
a cone-shaped wake.

Increasing the amplitude to A=3, and taking f./ f,=0.5 again, a new vortex shedding
mode is obtained, called '2C ", as quoted in Williamson & Jauvtis (2004). It is noteworthy that
the '2C' mode is not taken by other authors for the case of circular cylinder in rotationally-
oscillating moviment. According to Williamson & Jauvtis (2004) this mode was obtained for
pivoted cylinders. For f, / f,=2.5, Fig. (11g), there is a new standard of vortex emission, in
which the double vortex wake near the cylinder, composed by vortices of the same sign in
each row, after a given distance away from the cylinder are coupled to form a single wake.
The double wake length decreases with increasing the frequency ratio. In Fig. (11h),
corresponding to f, / f, =6.0 the instability caused by the cylinder oscillation is limited to a
region near the cylinder, while far from the immersed body, the vortices reorient themselves
to form the stable Von Karman Street. Occurs, therefore, a vortex-vortex interaction of the
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same sign near the cylinder, resulting in large scale vortices, whose frequencies have values
close to the vortex shedding frequency of the stationary cylinder (0.23). The return to the '2S'
mode is observed for high f, / f, in all simulated amplitudes.

o8 '8 8 5 3! 3!..9......'

®) (h)

Fig. 11. Instantaneous vorticity fields for Re=1,000: a) stationary cylinder; b) and c¢) A=1 and
f./ f,=1.05 and f./ f,=2.5 respectively; d) and e) A=2and f,/ f,=05 and f./ f, =25
respectively and f), g and h) A=3 and f./ f,=0.5, f./ f,=25 and f,/ f,=6.0
respectively.

5.3.2 Vortex shedding frequency
Figure (12) shows the power spectra (E, ) obtained by Fast Fourier Transform (FFT) of the

lift coefficients signals. The frequency peak more energized are called by St; and St, where
St; will be considered equal to the dimensionless frequency corresponding to the cylinder
oscillation St, = f.D /U . When the power spectrum contains only one promiment peak it is
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Fig. 12. Power Spectra for Re=1,000: a) stationary cylinder; b) and c) A=1 and f, / f, =1.05
and f./ f, =25 respectively; d)and e) A=2and f./ f,=0.5 and f,/ f, =2.5 respectively
and f) g)and h) A=3and f./ f,=0.5, f./ f,=25 and f,/ f, =4.0 respectively.
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called ressonance phenomenon or lock-in, ie, the cylinder is oscillating with a frequency
equal to the vortex shedding frequency. It is worth remembering that the energy peaks
corresponding to the harmonics are not considered here.

For the stationary cylinder case, Fig. (12a), the power spectrum shows a single energy peak,
corresponding to the Strouhal number equal to 0.23. For A=1 and f, / f, =1.05 given in Fig.
(12b), only one prominent peak is observed, corresponding to the lock-in regime. It is
important to observe that the lower limit of the lock-in regime for this amplitude, starts for
the studied cases, in f. / f, =0.6 . The ratio f./ f, =1.05 correspond to the upper limit of
this regime. Due to the large amount of data regarding all amplitudes and frequency ratios
studied, only few results are reported here. With the increase of the frequency ratio and
keeping the oscillation amplitude, Fig. (12c), there is more than one frequency peak in the
spectrum, which indicates that the lock-in regime no longer exists. Interesting to note, for
fo/ f, =25 (P+S' mode, as Fig. (11c)), that for this vortex shedding mode, the frequency
peak corresponding to St; has low energy level.

Increasing the amplitude for A=2 the lock-in regime range is greater, which is given by
05<f./f,<1.05. Figure (12d), f./ f,=0.5, represents the lower limit of the lock-in
regime for this amplitude. Note a considerable increase in energy level with the amplitude.
For f,/ f,=2.5, Fig. (12e), out of lock-in regime, it is noted a great reduction in the energy
level in comparison with Fig. (12d), inside the lock-in regime.

Considering A=3 and f./ f,=0.5 in Fig. (12f), there is only one prominent peak, which
indicates that this frequency ratio is within the lock-in regime. Comparing Figs. (12d) and
(12f), corresponding to the same frequency ratio and different oscillation amplitude, there is
an increase in energy level for a greater amplitude. It is noteworthy that the range of lock-in
regime, for this amplitude is greater than for A=2, being 0.2< f. / f,<2.5, as Fig. (12g)
(upper limit of the regime). It is Interesting to note that, within the lock-in regime, the
increase of the frequency ratio from f, / f,=0.5 to f./ f,=2.5 leads to a great reduction in
energy level, as shown in Figs. (12f) and (12g). This reduction is associated with different
vortex shedding modes, as shown in the Figs. (11f) and (11g). For f. / f, =4.0 and A=3, Fig.
(12h), one observes two frequency peaks, which indicates that, the lock-in regime no longer
exists. It is verified for all considered amplitudes that as the frequency ratio is increased, the
frequency called St, gradually recovers the frequency corresponding to the stationay
cylinder, due to the fact that for high oscillation frequencies, there is no more
synchronization between the oscillating cylinder and vortex shedding downstream of it.
Thus, the vortices tend to reorient themselves to form a classical von Karman Street and the
frequencies match up again.

6. Conclusion

One of the goals that motivated the development of this work was to demonstrate through
analysis of the important parameters such as dynamic coefficients, obtained through two-
dimensional simulations of incompressible flows, that the second order centered spatial
schemes can perfectly provide accurate results when used toghether the second order time
discretization scheme. Another motivation was to continue the development of the
Immersed Boundary method with the Virtual Physical model for further application in
problems of interst both academic and industrial.
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Firstly, simulations were performed with stationary cylinder, considering different
Reynolds numbers and time discretization schemes. Results such as vorticity, time histories
and fluctuations amplitude of dynamic coefficients and the Strouhal number are obtained.
The concomitant use of second order temporal schemes with the spatial centered scheme is
crucial for the stability of the methodology. The Adams-Bashforth temporal scheme
presented more stable than the second order Runge-Kutta scheme. As the Reynolds number
is increased the methodology showed to be unstable for all second-order temporal
discretization schemes. This result is expected once the centered scheme has no numerical
diffusion. Thus, it is concluded that for high Reynolds number, the use of turbulence
modeling for the energy transfer process between the largest and smallest scales of
turbulence is needed. It is important to appreciate that without the modeling and numerical
diffusion the kinetic energy of the physical instabilities accumulates on the cutoff frequency
and the simulation diverges. The cutoff frequency is determined by the mesh discretization.
It is known that the use of developed flow boundary condition at the outlet of the domain is
common in the literature. However when there are physical instabilities, which must leave
the domain, there may be problems of numerical stability, especially when using centered
spatial schemes. This is due to the fact that the physical instabilities carry spurious
information from the outside of the domain to inside. The result is also the divergence of the
simulations. To solve this problem the use of a damping function is essential to ensure
stability for higher values of Reynolds number.

Aiming to illustrate the applicability of the Immersed Boundary method used togheter the
second order spatial centered scheme and second order temporal discretization scheme,
simulations were carried out with a circular cylinder pairs, rotating cylinder and
rotationally-oscillating cylinder. For the rotating cylinder case, the results showed good
agreement with literature data. It was found that the rotation has greater influence on the
amplitude of the drag coefficient than on the amplitude of the lift coefficient. It's worth
noting that with increasing rotation the amplitude of the dynamic coefficients tends to null,
as expected, once the vortex shedding process decreases.

For simulations with rotationally oscillating cylinder is analyzed the influence of amplitude
and frequency ratio in the vortex shedding modes, as well as in the vortex shedding
frequency. It is observed different vortex shedding modes when fixed the oscillation
amplitude and varies the frequency ratios. It is important to appreciate the 2C mode
obtained in this study once this mode is not found in the literature for rotatinally-oscillating
cylinder and it is worth mentioning that, according to Williamson & Jauvtis (2004) the 2C
mode is obtained for pivoted cylinder. It is also obtained for the amplitude and frequency
ratios considered the lock-in regime, whose range increases as the oscillation amplitude
increases.
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1. Introduction

Convection-diffusion equations are widely used for modeling and simulations of various
complex phenomena in science and engineering (Hundsdorfer & Verwer, 2003; Morton, 1996).
Since for most application problems it is impossible to solve convection-diffusion equations
analytically, efficient numerical algorithms are becoming increasingly important to numerical
simulations involving convection-diffusion equations.

Recently a great deal of efforts have been devoted to developing high-order compact schemes,
which utilize only the grid nodes directly adjacent to the central node. In (Noye & Tan, 1989),
Noye and Tan derived a class of high-order implicit schemes for solving the one-dimensional
unsteady convection-diffusion equations. This method is very stable and accurate (third-order
in space and second-order in time). In (Gupta etal., 1984), a fourth-order finite difference
scheme for a steady convection-diffusion equation with variable coefficients was proposed.
The scheme is defined on a single square cell of size 2Ax over a nine-point stencil. In
(Rigal, 1994), Rigal provided an extensive analysis of the properties of a class of two- and
three-level second-order difference schemes which have been proposed in (Rigal, 1989; 1990).
In (Spotz & Carey, 2001), the two-dimensional HOC (High Order Compact) scheme proposed
in (Gupta et al., 1984) was extended to solve unsteady one-dimensional convection-diffusion
equations with variable coefficients and two-dimensional diffusion equations. This method
was further extended by Kalita et al. in (Kalita et al., 2002) to a class of HOC schemes
with weighted time discretization, and successfully used to solve unsteady two-dimensional
convection-diffusion equations. In (Karaa & Zhang, 2004), Karaa and Zhang proposed a novel
high-order alternating direction implicit method, based on the technique in (Zhang etal.,
2002), for solving unsteady two-dimensional convection-diffusion problems. This new
method is second-order in time and fourth-order in space, and is computationally efficient.
In (Tian & Dai, 2007), Tian and Dai proposed a class of high-order compact exponential finite
difference methods for solving one- and two-dimensional steady-state convection-diffusion
problems. This method is nonoscillatory, fourth-order in space, and easy to implement. Some
more recent high-order ADI methods for unsteady convection-diffusion equations can be
found in (Tian & Ge, 2007; You, 2006).
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For simplicity, we will use the following one-dimensional equation to describe the new
method developed in this chapter:

up = avyy + c(x)uy + f(u), (1)
0<x<1,0<t<T,

u(0,t) = g1(t),u(1,t) = ga(t),
u(x,0) = h(x),

where a is a constant. Extensions to more complicated equations in one-dimension(for
example when 7 is not a constant) are straightforward; and extensions to higher-dimensional
equations will be briefly discussed in Section 6.

The existence of the convection term in Eq. (1) creates several difficulties when the
equation is solved numerically using the finite difference schemes. It is well-known
(Hundsdorfer & Verwer, 2003; Morton, 1996) that the convection term needs to be discretized
using proper upwind finite difference schemes to avoid oscillations in convection dominated
problems. If the sign of c(x) changes over the solution domain, the direction of the upwind
scheme must also be changed accordingly. The order of accuracy of the upwind schemes is
usually lower than the central difference schemes on the same finite difference stencil.

In addition, the convection term in Eq. (1) also makes it more difficult to use the fourth-order
Padé approximations. For reaction-diffusion equations (¢(x) = 0), the Padé approximation
can be used to achieve fourth-order accuracy on a 3-point stencil typically used for the
standard second-order algorithms(Gu et al., 2003):

ulfH—l _ ulr} (521/[1{14—1

7"1+1 2
Af "A(1+ ) A @

wherei = 0,1,--- ,M,and n = 0,1,--- , N are indices for spatial and temporal grid points,
respectively, 1} is the numerical approximation to the exact solution u(x;, "), and the central

difference operator 62 is defined as (52u;’ =u} | —2ul +u? ;. Applying the operator (1 + %)

i+1°
to both sides of Eq. (2), we have
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Eq. (3) is fourth-order accurate in space but contains only the second-order central difference
operator &> that requires only a 3-point stencil. This approach, however, does not work
when the convection term is present in the equation. This is because the fourth-order Padé
approximation for Eq. (1) leads to the following equation

u;H»l _ u;} 52ulﬂ+1 5uln+1

=a +c
At AP+ %) 28x(1+ )

+ f(uf ),

where the central difference operator ¢ is defined as éu!' = u} ; — ul ;. This equation cannot
be simplified to an equation that is defined on a 3-point stencil in the same way as Eq. (2) is
reduced to Eq. (3).

The new method discussed in this chapter eliminates the convection term u, from Eq. (1) and
solves v = u, directly along with u. This makes it possible to use central finite difference
schemes and higher-order Padé approximations for accurate and efficient numerical solutions



A Fourth-Order Compact Finite Difference Scheme
for Solving Unsteady Convection-Diffusion Equations 83

of convection-diffusion equations. It is unconditionally stable, and is particularly suitable
for problems that require the solution of both u and uy. For example, when solving the
Black-Scholes option pricing model(Seydel, 2002)

aa‘t/ 1 2523524—1’535 —rV =0, 4
both the solution V and its derivative Vg are desired. The solution V is the price of an option
and its derivative Vg is called the hedge delta that represents the sensitivity of the option value
to the change of the underlining stock price.

The rest of this chapter is organized as follows: The description of the new method is given
in the next section. Proof of unconditional stability of the new method is given in Section
3. Computational complexity of this new method is analyzed and compared with upwind
and standard central finite difference schemes in Section 4. Several numerical examples are
presented in Section 5, followed by conclusions in Section 6.

2. The new method

In this section, we will first outline the new algorithm that eliminates the convection term in a
convection-diffusion equation to facilitate the use of central finite difference schemes and then
discuss how the initial and boundary conditions are handled using the new algorithm.

2.1 Description of the new method
Setting v = uy in Eq. (1), we have

up = atlyy + c(x)v + f(u) 5)
Differentiating both sides of Eq. (1) with respect to x leads to
(ux)t = a(txx)x + cx(x)tx + 0(x) (tx)x + fu(u)ux (6)
which, considering v = uy, can be written as
vp = c(X)txy + avxx + cx(X)0 + fu(u)v )

Eq. (5) and (7) now form a system of equations for u and v. They only involve diffusion
term uyy and vyy, which can be discretized by the standard central finite difference schemes.
If the 3-point second-order central difference scheme is used, the discretized equations will
form a block tri-diagonal algebraic equation system with 2 x 2 blocks. For nonlinear f(u),
the Newton’s method or its variations can be used to solve the nonlinear system of algebraic
equations.

If the fourth-order Padé approximation is used for Egs. (5) and (7), we have
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Applying the operator (1 + %) to both sides of these two equations, we obtain
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Egs. (10) and (11) are fourth-order accurate in space but only contains the second-order central
difference operator 6 that is defined on a 3-point stencil. As a result, the discretized equations
form a system of block tri-diagonal algebraic equations.

2.2 Initial and boundary conditions
The initial condition for v can be obtained by differentiating /(x), the initial condition fro u
given in Eq. (1) with respect to x, i.e.

dh(x)

dx
The boundary conditions for v, or for Eq. (7), are less straight forward. In the following, we
discuss three different ways to generate boundary conditions for v at the spatial grid point
i = 0, assuming Dirichlet boundary conditions are given for 1. The boundary conditions for v
at the spatial grid point i = M and other scenarios can be dealt with in similar ways.
Standard finite difference approximation: Since v = 1y, we have

v(x,0) =

uyp —up
vg = ——, 12
0 Ax (12)
which provides an equation to complement the equation obtained by discretizing Eq. (7) at
i = 1. This approximation is first-order accurate in space. If necessary, higher-order one-sided
finite difference schemes can be used to approximate v = 1.
Padé approximation: We can use the fourth-order Padé approximation ati = 1 for v = uy

51/!1 Uy — Ug
v = o= o (13)
28x(1+ %) 28x(1+%)
Applying (1 + 5—62) to both sides of Eq. (13), we have
52 Uz —Up
I+ )= =5 (14)
o 1 2 1
Uz — U
- z 0y = . 1
600+301+602 Ax (15)
Solving vg from Eq. (15), we obtain the boundary condition
vy = M —4v1 — 0. (16)

Ax
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Direct integration of Eq. (1): This approach is particularly convenient for special cases of
Eq. (1). For example, when dealing with steady state equation with a constant convection
coefficient and constant f(u), we have

AUyy + cy +d =0, 17)
where g4, ¢ and d are constants. Integrating this equation from x( to x;, we have
uux\§é+cu\§é+d(x1 —x0) =0, (18)

or
avy — avy + cuq — cug + dAx = 0. (19)

Solving vg from Eq. (19), we obtain the boundary condition
vy = %(uvl + cuy — cugp + dAx). (20)

This boundary condition has no truncation error since the integrations are carried out exactly.
For more general cases when some of the terms in Eq. (1) cannot be integrated exactly, various
numerical integration schemes, such as the second-order Trapezoidal scheme, can be used to
generate boundary condition for v in a similar way.

3. Stability analysis

Stability is critical to numerical methods used to solve time-dependent systems. In this
section, we conduct Von Neumann stability analysis for the new method combined with
the standard second-order central difference scheme. The following one-dimensional linear
convection-diffusion equation is used in the analysis

Ut = Uxx + Cly (21)

The new method combined with the second-order central difference for solving Eq. (21) is

gy 1
i i 752 V}-‘rl }"l+1’ 22
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ot C 52
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At sz ul + sz Uz ( )
Taking the discrete Fourier transform of the above equations, we have
ﬁn+1 o
l:.anﬂ =R l:.anj| . (24)
Thus .
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where
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and
witha = A4, B = cAt,and v = <A¢

10
©= o1l
A2’ Ax?

Here M~ IR is the amplification matrix at each time-step. In order for the numerical algorithm
to be stable, the modulus of the eigenvalues of M~!R must be less than or equal to unity for
all possible values of 6. For the 2 x 2 matrix, it is easy to see that it has two conjugate complex
eigenvalues. If the modulus of the two eigenvalues is less than or equal to 1, then the method
is unconditionally stable.

The eigenvalues of M~!R can be calculated as

1 +20<sin2(%) + i(C\/Msin(g))
w =
1+ dasin?(§) + 4a2sin (§) + 2c2Atasin®(§)

7

thus we have

1+ 4asin®(§) + 4a2sint(§) + 2c2Atasin?(§).
1

1
jwl?

Obviously, |w|* < 1since 0 < sinz(g) <landa > 0.

4. Computational complexity

In this section an estimation of computational cost of the new method is obtained, and
computation times for three methods (upwind, standard central finite difference or standard
cfd, and fourth-order new method) are compared using the following model equation

Uy —uyy =0, u(0)=0, u(l)=1, (26)
with exact solution u(x) = e;_’ll.
If the above model equation is discretized over n subintervals with equal size, and the
numerical solution at the i-th grid point is denoted as u;, the solutions can be obtained
by solving the linear system AU = b. For both the upwind and standard central finite
difference schemes, A is an n x n tridiagonal matrix and U = (uy,up,--- ,u,). For the
fourth-order new method the matrix A is a 2n x 2n banded matrix with a bandwidth of 7,
and U = (uq,v1,up,0p,- -+ , Uy, vy) contains the numerical solutions for both u and v, with
UV = Uy.
If an efficient algorithm is used to solve the tridiagonal linear system resulted from
upwind and standard central finite difference schemes,a total of 2n — 1 divisions, 3(n — 1)
multiplications, and 3(n — 1) subtractions are needed. The computational complexity is
2m—1)4+143m—1)+3(n—1) =8n—7=8n+ O(1) flops.
If the Gaussian elimination algorithm is used to solve the linear system resulted from the
fourth-order new method, a total of 18n — 15 divisions, 24n — 22 multiplications, and 24n — 22
subtractions are needed. The computational complexity is 661 — 59 = 661 + O(1) flops.
Table 1 clearly shows that to achieve the same accuracy the fourth-order new method is much
faster than both upwind and the standard second-order central finite difference schemes. For
instance, to obtain an error less than 1.0E-05, the upwind scheme needs 68.054 seconds, and
the standard second-order central finite difference scheme needs 0.0012 seconds, while the
fourth-order new method needs only 0.0010 seconds to obtain an error of 7.4E-07. For the
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Upwind Stand-cfd [4/-order new
Error |Time| Error |Time| Error | Time
9.7E-03/.0016 |4.1E-04|.0011|7.4E-07| .0010
9.9E-04/.0098 |9.8E-06{.0012{9.2E-09| .0012
1.0E-04|.5155|1.0E-06{.0016|1.8E-10| .0014
1.0E-05|68.05|1.0E-08{.0101 |4.7E-12| .0016
1.0E-08| oo |[1.0E-10{.4870|2.9E-13|.0022
1.0E-09| oo |[1.5E-11|7.059|4.1E-14|.0035

Table 1. Computational cost vs accuracy for different algorithms

first-order upwind scheme, it is almost impossible to obtain an error less than 1.0E — 08 since
a grid size of h = 1.0E — 08 is needed.

Note that the symbol co in Table 1 does not really represent infinity. It just represents an
excessively large number. The computation time for each test case is the average of five runs.
The unit for computation time is second.

5. Numerical results

Several numerical examples are presented here to compare the new method with the standard
finite difference algorithms.

Example 1: In this example, we compare the accuracy of four different algorithms using
the same 3-point finite difference stencil. The following steady state convection-diffusion
equation is used in the example:

—aulyy +cuy =0, u(0)=0,u(l)=1, (27)

a X —
u(x) = ¢ - 1. (28)
ea —1

Ax |Upwind 2 _stand [ 2" -new |4 -new
1/10 |1.32E-01| 3.45E-02 |1.41E-02|7.41E-04
1/20 |7.64E-02| 7.90E-03 |3.70E-03|4.74E-05
1/40 |4.17E-02| 1.90E-03 |9.52E-04|2.98E-06
1/80 |2.18E-02| 4.79E-04 |2.39E-04|1.87E-07
1/160|1.12E-02| 1.20E-04 |5.98E-05|1.17E-08

Table 2. Errors between the exact solution and the numerical solution of Eq.(27) with a = 0.1
and c = 1.

Table 2. shows the error ||u¢ — 11|/ between the exact solution u® and the numerical solution
u° calculated using the following four finite difference schemes with 2 = 0.1 and ¢ = 1:

1. Upwind: First-order upwind difference for the convection term and second-order central
finite difference for the diffusion term.

2. 2™ _gtand: Second-order central difference for both the diffusion and convection terms.

3. 2"_new: New method that uses second-order central difference for Egs. (5) and (7).
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4. 4" _new: New method that uses fourth-order Padé approximation for Egs. (5) and (7).

All results are obtained using a 3-point stencil. It is clear from Table 2 that the accuracies
of different schemes are as expected: when the grid size Ax is reduced by %, the errors
are reduced by approximately 3, (3)? and (})* for the 1%, 2"- and 4""-order algorithms,
respectively.

- a=0.1
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08[ .. a=0.001

0.6F
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0.2F

-0.2F

-0.4F

-0.6}F

0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 1. Solution curves corresponding to a = 0.1, 0.05,0.001 and ¢ = 1 using the 21 _gtand
algorithm with Ax = 0.001.

Although both the 2"¥-stand and 2"¥-new algorithms produced comparable results for the
case of a = 0.1 and ¢ = 1 shown in Table 2, the 2"-new algorithm is much more robust when
the boundary layer near x = 1 becomes steeper as a decreases. Fig. 1 and Fig. 2 show the
solutions calculated using the 2"¥-stand and 2"¥-new central difference schemes, respectively.
The three curves in each figure correspond to the diffusion coefficient 2 = 0.1,0.05, and 0.001,
respectively. It is clear from Fig. 1 that the solution calculated by the standard second-order
central difference scheme becomes highly oscillatory when a reaches 0.001, while the solution
calculated by the new second-order central difference scheme shown in Fig. 2 describes the
steep boundary layer near x = 1 very well.

Example 2: In this example, we compare the robustness of three different algorithms. The
governing equation for this example is

e+ (¥ — %)ux —0, uw(0)=0, u(l)=1, 29)
where a is a constant. The convection coefficient changes sign in the middle of the domain,
which makes this turning point problem difficult (Morton, 1996).

Fig. 3 shows the solution curves obtained by the new method using the second-order central
difference algorithm. The four solution curves in the figure correspond to diffusion coefficient
a = 1.0,0.1,0.01,0.001, respectively, all calculated with Ax = 0.001. It is clear that as a
decreases, the boundary layers at x = 0 and x = 1 become steeper. Also note that all four
solution curves pass the same point x = 0.5, where the convection coefficient is zero.

Fig. 4 shows the solution curves obtained by the standard finite difference schemes on
the same grid with Ax = 0.001. The diffusion term is discretized by the second-order
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Fig. 2. Solution curves corresponding to a = 0.1,0.05,0.001 and ¢ = 1 calculated using the
2" _new algorithm with Ax = 0.01.
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Fig. 3. Solution curves corresponding to a = 1.0,0.1,0.01 and 0.001 calculated by the new
method using central difference scheme

central difference scheme and the convection term is discretized by the first-order upwind
scheme assuming the convection coefficient is positive. The change of sign of the convection
coefficient is not taken into consideration. The solution curves correspond to 2 = 1.0 and 0.1
look reasonable. But the solution curve correspond to 2 = 0.01 is not accurate. It does not
cross the solution curves corresponding to @ = 1.0 and 0.1 at x = 0.5. The solution curve
corresponds to a = 0.001 does not resemble the correct solution at all. This is not surprising
since the convection coefficient changes sign but the upwind scheme used in the calculation
does not take this into consideration.
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Fig. 4. Solution curves corresponding to a = 1.0,0.1,0.01 and 0.001 calculated by the upwind
scheme without considering the change of sign of the convection coefficient.
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Fig. 5. Solution curves corresponding to a = 1.0,0.1,0.01 and 0.001 calculated by the upwind
scheme taking into consideration the sign change of the convection coefficient.

Fig. 5 shows the solution curves obtained by the standard finite difference algorithm. The
diffusion term is discretized by the second-order central difference scheme and the convection
term is discretized by the first-order upwind scheme taking into consideration the sign change
of the convection coefficient. We can see the solution curves correspond to 4 = 1.0,0.1, and
0.01 are very similar to those in Fig. 3. All three solution curves cross each other at the same
point x = 0.5. However, the solution curve corresponding to 2 = 0.001 does not resemble the
true solution at all. This is somewhat surprising but probably can be attributed to the difficulty
caused by the turning point at x = 0.5 where c¢(x) = 0. The situation does not improve even
when the grid spacing Ax is further reduced.
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Example 3: In this example we solve a nonlinear Black-Scholes equation, which is widely
used to model option price when transaction cost is considered. It is well known that in the
area of financial mathematics, the calculations of both the solution and its first derivative are
required. The derivative is the so-called hedge delta, which actually represents the number of
shares (of stock) that one should hold or sale, in order to maximize the profit. The nonlinear
Black-Scholes equation solved in this chapter is given below. More details about this model
can be found in (Barles & Soner, 1998).

up = (1+ @[E(Kt+")a2E(uxx + uy)]) (thxx + ux) — Kuiy,

with initial and boundary conditions
u(x,0) = max(1—e%,0), u(—oo,t) =0, u(oo,t)=1,

where 7 is transaction cost rate, E is the strike price, K = %, p is the risk-free interest rate, oy
0

is the volatility of the stock, and ® is a function defined as the solution to the following ODE:

/ CD(S) +1

D (s) = 2 /50(s) — 5’ ®(0) =0, (30)
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Fig. 6. Solution curves for option price corresponding to various transaction cost
rates(a = 0.0,0.01,0.02) and the pay-off curve.

In the numerical solution process, the infinite domain is approximated by a finite interval
of sufficient length. In financial industry, one of the widely used methods for calculating
hedge delta is to first solve the Black-Scholes equation to obtain numerical solution of u, and
then apply finite difference schemes to the numerical solution to obtain approximations to .
With the new method discussed in this chapter, both the solution u and the hedge delta u, are
calculated simultaneously. Fig. 6 and Fig. 7 show the option price and the hedge delta for
various transaction cost rates, respectively.
Example 4: In this example we solve a time dependent nonlinear equation, the Burgers’
Equation:

up +uny = auyy, u(0,t)=0, u(l,t)=1, (31)
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Fig. 7. Solution curves of the hedge delta ?T‘S/ corresponding to various transaction cost
rate(a = 0.0,0.01, 0.02).

where a is a constant. We first solve the equation with the initial condition u(x,0) = x(1 — x),
for which the analytic solution is not available. Figs. 8, 9, and 10 show the solution curves for
various a values obtained by the standard central difference scheme (for both the convection
and diffusion terms), the upwind (for convection)-central difference (for diffusion) scheme,
and the new method using second-order central difference, respectively. It is clear that
as a decreases, for instance, 4 = 0.001 , the standard central difference scheme produces
oscillations in Fig. 8.
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Fig. 8. Solution curves corresponding to a = 0.1, 0.01,0.001, 0.0001 using the standard central
difference scheme with Ax = 0.01.

The new method, on the other hand, produces solutions that are oscillation free as shown in
Fig. 9. These solutions are similar to those produced by the upwind-central difference scheme
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shown in Fig. 10, and agree with the results reported in other works, such as (Hassanien et al.,
2005).
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Fig. 9. Solution curves corresponding to a

= 0.1,0.01,0.001, 0.0001 using the upwind scheme
with Ax = 0.01.
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Fig. 10. Solution curves corresponding to a = 0.1,0.01,0.001, 0.0001 using the second-order
new algorithm with Ax = 0.01.

Next we use the initial condition

5 .
u(x,0) = artsin(7tx) ’ 32)
i + cos(7rx)
with x > 1, for which the exact solution to Eq. (31) is known as

2ame~at sin(7tx)
u(x,t) = . 33
(x.t) K -+ et cos(7rx) 33)
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We apply both the upwind-central scheme and the second-order new method to this example
to compare the accuracy of the two algorithms. Table 3 shows the error ||u¢ — u|| between
the exact solution u® and the numerical solution 1 calculated using the two algorithms with
x = 1.2, fora = 0.001 and a = 0.0001. All results are obtained using a 3-point stencil. Since the
main focus of the study is to compare spatial accuracy of the two algorithms, the first-order
explicit time integration is used for simplicity with At = 0.0001 to ensure stability. It is clear
from Table 3 that the accuracies of the two schemes are as expected: When the grid size Ax is
reduced by %, the errors are reduced by approximately % and (%)2 for the upwind-central and

the 2""¢ —new schemes, respectively.

Ax | upwind | 2"-new | upwind | 2"%-new
a = 0.001|a = 0.001|a = 0.0001|a = 0.0001
1/20 | 2.69E-04 | 1.48E-04 | 3.47E-06 | 2.31E-06
1/40 | 1.67E-04 | 3.87E-05 | 2.20E-06 | 6.11E-07
1/80 | 9.40E-05 | 9.79E-06 | 1.23E-06 | 1.67E-07
1/160| 4.98E-05 | 2.45E-06 | 6.46E-07 | 4.13E-08

Table 3. Errors between the exact solution and the numerical solution of Eq. (31) with
a = 0.001 and a = 0.0001.

The numerical examples presented in this chapter show that the standard central difference
scheme is second-order accurate on a 3-point stencil but produces oscillatory solutions for
convection dominated problems. The upwind scheme is more robust but is only first-order
accurate on a 3-point stencil. The new method discussed in this chapter appears to combine
the advantages of accuracy of the standard central difference algorithm with the robustness
of the upwind scheme for convection dominated equations.

6. Conclusions

The method discussed in this chapter eliminates the convection term in Eq. (1) and makes it
feasible to use central difference schemes to solve convection-diffusion equations accurately.
The new method, combined with the central difference schemes, can achieve better accuracy
than the upwind schemes on the same finite difference stencil, and is shown in the examples
presented here to be as robust as the upwind schemes for convection dominated problems. It
can also be easily combined with the Padé approximation to achieve fourth-order accuracy in
space on a 3-point finite difference stencil.

The new method does incur a modest increase in computational complexity. Instead of just
solving Eq. (1), the new method requires solving Egs. (5) and (7). With a 3-point stencil, the
standard upwind-central difference schemes will generate a system of tri-diagonal algebraic
equations, while the new method discussed in this chapter will lead to a system of block
tri-diagonal algebraic equations with 2 x 2 blocks. This increased complexity, however, can
be compensated by the use of fewer grid points with the increased order of accuracy of the
new method. Furthermore, for problems that require calculations of both the solutions and
their derivatives, the new method eliminates the need to calculate the derivatives after solving
Eq. (1).

The discussions of the new method in this chapter are based on one-dimensional
problems. For higher-dimensional problems, a straightforward application of this method
will lead to systems of four equations for two-dimensional problems and seven equations
for three-dimensional problems. For better computational efficiency, operator splitting
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(Gustafsson et al., 1995) should be used to first decompose the original equation into a series
of one-dimensional problems. The new method discussed in this chapter can then be applied
to these one-dimensional problems to calculate numerical solutions efficiently. Details will be
presented in future papers.
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Internal Waves Radiation by a Turbulent
Jet Flow in a Stratified Fluid

Oleg Druzhinin
Institute of Applied Physics, Russian Academy of Sciences
Russia

1. Introduction

The radiation of internal gravity waves by stratified turbulent shear flows is encountered in
many geophysical flows. Numerous applications include jet flows (Sutherland & Peltier
1994), grid-generated turbulence (Dohan & Sutherland 2003), boundary layers (Taylor &
Sarkar 2007), collapse of mixed patches (Sutherland et al. 2007), wakes behind towed and
self-propelled bodies (Lin & Pao 1979), and many others. The present paper deals with
internal waves radiated by a jet flow that is created in the far wake of a sphere towed in a
stratified fluid at large Froude and Reynolds numbers.

Experimental studies of internal gravity waves (IW) radiated by a towed sphere and its
wake were performed both in a linearly stratified fluid by Bonneton, Chomaz & Hopfinger
(1993) (further referred to as BCH) and in the presence of a thermocline by Robey (1996).
The results show that internal waves radiated by the sphere (i.e. the lee waves) are
stationary with respect to the sphere, and their amplitude is inversely proportional to the
sphere Froude number, defined as Fr=2V /ND (where N is the buoyancy frequency, and
V and D are the towing speed and the sphere diameter). On the other hand, internal waves,
radiated by the turbulent wake are not stationary with respect to the sphere, and their
amplitude grows as Fr increases. Experimental results obtained by BCH and Robey (1996)
show that if the Froude number is sufficiently large (Fr > 10), non-stationary IW supercede
the lee waves.

Experimental results obtained by BCH show that at early times (Nt = O(10)) internal waves
are radiated due to the collapse of the vortex coherent structures developing in the near
wake (Chomaz, Bonnet & Hopfinger (1993), further referred to as CBH). The wavelength of
these waves (also called “random” waves) is of the order of the sphere diameter, and their
dynamics is well described theoretically under an assumption that each collapsing coherent
structure can be regarded as an impulsive source of IW. Visualization of the density
distribution in a horizontal plane at a distance of three sphere radii below the towing axis at
times Nt < 40 gives a rather complicated, irregular isophase pattern of these random internal
waves.

The results of BCH show also that at later times (Nt > 40) random internal waves are
superceded by waves whose initial spatial period is of the order of five sphere diameters.
The isophase distribution of these waves, although being non-stationary with respect to the
sphere, is reminiscent of the regular iso-phase pattern of the lee-waves. At sufficiently late
times (Nt > 50), the random waves disappear, and there remain only coherent IW. BCH give
no explanation of the observed dynamics of these coherent internal waves.
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The experimental study of internal waves produced by a sphere towed under a thermocline
at large Froude and Reynolds numbers was performed by Robey (1996). The results also
show that the turbulent wake generates coherent internal waves which are non-stationary
with respect to the sphere and whose amplitude grows linearly with Fr. In order to explain
these experimental observations Robey (1996) considers a physical model of the IW
radiation by the wake. According to this model, internal waves are emitted by vortices shed
by the sphere, and each vortex can be regarded as a stationary source moving at a
“resonance” speed, such that its effective Froude number is of order unity. Note however,
that experimental results obtained by CBH do not support the assumption that such
stationary vortices are present in the near wake.

Another theoretical model of IW radiation by the wake flow has been developed by Dupont
& Voisin (1996). According to this model, internal waves are emitted by an oscillating source
moving with the speed of a sphere. It is assumed that such a source adequately represents
coherent vortex structures which are shed by the sphere at the frequency of a spiral
instability mode of the near-wake flow (observed experimentally by CBH) and collapse
under gravity. Dupont & Voisin (1996) performed numerical calculations based on the
Green’s function formalism developed by Voisin (1994). However, numerical results of
Dupont & Voisin (1996) show that the IW phase pattern predicted by the model is rather
complicated and does not reproduce the regular phase distribution related to the coherent
internal waves observed experimentally by BCH.

Recently there have been successful attempts to perform DNS and LES of stratified wakes
by Gourlay et al. (2001), Dommermuth et al. (2002) and Brucker & Sarkar (2010). Since the
mean streamwise fluid velocity in the wake is much smaller than the sphere towing speed,
the variation of the flow statistical properties along the streamwise (x) axis can be neglected
in DNS in the considered flow region. Thus the flow in DNS/LES is initialized as a sum of a
circular, mean streamwise velocity profile and an x-periodic, random velocity component
accounting for the turbulent fluctuations. This turbulent component is prescribed as a sum
of Fourier harmonics with independent random phases and given amplitude power
spectrum. Numerical results of Gourlay et al. (2001) (such as the temporal development of
the wake axis mean velocity, width and height and the instantaneous vorticity distribution)
are in good qualitative agreement with the experimental data obtained by Spedding et al.
(1996) and Spedding (2001). Dommermuth et al. (2002) performed the LES study of the
stratified wake and used a relaxation procedure to bring to equilibrium the initially
unrelated turbulent production and dissipation. Their results are similar to the results of
Gourlay et al. (2001) and show that the relaxation procedure is essential for accurately
simulating the near wake but is not important if only far wake is of interest. DNS of the
turbulent wake flow at high Reynolds number (Re=50000) was performed recently by
Brucker & Sarkar (2010) using the same flow initialization procedure. Both Gourlay et al.
(2001) and Dommermuth et al. (2002) and Brucker & Sarkar (2010) conclude that startified
wakes are capable of radiating internal waves, but do not examine in detail the physical
mechanism of the IW radiation and the properties of waves kinematics and dynamics. The
radiation of internal waves by a turbulent jet flow in a linearly stratified fluid was studied
recently by performing DNS by Druzhinin (2009). The results show that IW radiation occurs
at times 10 < Nt <30 and can be described as a result of an impulsive collapse of the vertical
velocity fluctuation of the initially 3D turbulent flow.

The objective of the present paper is to study in more details the process of internal waves
radiation by a temporally developing turbulent jet flow in a stratified fluid by direct
numerical simulation. An initially circular, turbulent jet flow is considered with parameters
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that match parameters of a far wake of a sphere towed in a stratified fluid at large Froude
and Reynolds numbers (of order O(10) and O(10*), respectively). The mathematical
formulation and description of the numerical procedure are provided is Section 2. In Section
3 the properties of the jet flow and radiated internal waves obtained in DNS are described.
In Section 4 a linear impulsive source theory is applied to explain the observed IW
kinematics and dynamics, and final conclusions are found in Section 5.

2. Governing equations and numerical method

A circular jet flow with the initial (reference) Gaussian profile of the streamwise (x) velocity
component is considered in the form:

Uy = exp(—él[y2 +2° ]) , 2.1)

where y and z are the spanwise and vertical coordinates, respectively. Hereafter, all the
variables are made dimensionless via normalizing by the velocity and length scales defined
by the initial jet axis mean velocity and diameter, U, and L, . For example, in the case of a
wake created by a towed sphere, L, is close to the sphere diameter (L, /D =~0.8) and U, is
defined by the towing speed V and the velocity deficit at the wake central axis at a given
distance behind the sphere., e.g. U, /V =0.1 at x /D=6 (cf. Bevilaqua & Likoudis 1978).
An initial linear, stable stratification of the fluid density is considered (p,,; =-2).

The Navier - Stokes equations for the fluid velocity are written under the Boussinesq
approximation in the dimensionless form:

O+ U0 U, + U0, U, + 8y, (U, 0, U, + U0 U, ) =

0P+ U 4B (awumf + 0% U, ) ~8.Rip,
o;u; =0. (2.3)
The equation for the fluid density is written as:
0ip+U0ip+U,0,p-U, = . (2.4)

RePr

In Egs. (2.2) - (24), U
velocity and density from their respective reference profiles, and §; is the Kroneker’s
symbol. The Reynolds number and the global Richardson number of the flow are defined as:

i (i=x,y,z) and p are the instantaneous deviations of the fluid

Re = Jobo, 25)
v
and
Ri=8%P0 Lo 2.6)

po Up
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where v is the fluid kinematic viscosity, g the acceleration due to gravity, and (Ap, /py)
the absolute relative density variation in the vertical direction on scale L, . (Note that since
U, /V =0.1, the Reynolds and Froude numbers of the sphere are about 10 times larger than
Re and Fr=Ri'/?, respectively.) As follows from egs. (2.2) - (2.6), the dimensionless
buoyancy frequency equals N = Ri'/?> =1/ Fr . The Prandtl number is set equal to unity. The
results of DNS by Stadler et al. (2010) performed recently show that that Pr = 1 is a
reasonable approximation for Pr = 7 which is the case of the thermal stratification in the
ocean.

In order to perform numerical simulation in a region finite over the vertical coordinate and
provide a sufficient resolution of the flow field, a mapping for the z-coordinate is employed
in the form:

4

& =tanh—, (2.7
9
so that
z= 4.51n[1+§] , (2.8)

and -1<&<1 for —o<z<w. The derivatives over z-coordinate in Egs. (2.2)-(2.4) are
rewritten as:

g2
R e 29)
0z 9 Jog
Equations (2.2) - (24) are discretized in a parallelepiped domain with sizes

0<x<36,-9<y<9 and -1<&<1 by employing a finite difference method of the second-
order accuracy on a uniform rectangular staggered grid consisting of 480 x 240 x 240 nodes
in x, y, and {(z) directions, respectively. The terms on the left hand side of equations (2.2)
and (24), U, 0.U; and U,.0,.p, that are responsible for the advection by the reference

velocity U, (y,z), are evaluated at each time step by Fourier interpolation which is a more

accurate method to compute these terms as compared to a pure finite difference scheme
(Gerz et al. (1989)). The integration is advanced in time using the Adams-Bashforth method
with time step At = 0.0075. The shear-free (Neumann) boundary condition is prescribed in
the spanwise and vertical directions (at y = + 9 and &= % 1), and x-periodic boundary
condition is prescribed in the streamwise direction. The Poisson equation for the pressure is
solved by fast Fourier transform over x-coordinate, cosine transform over y-coordinate, and
Gauss elimination method over z-coordinate.

As it was observed by Gourlay et al. (2001) in their DNS study, internal waves radiated by
the jet turbulence propagate away from the jet core toward the boundaries of the
computational domain in the y and z directions. Thus one needs to avoid reflection of the
waves from the boundaries and their coming back into the flow region. One way to do this
is to prescribe the Sommerfeld radiation boundary condition (cf. e.g. Javam et al. 2000). In
the present study we adopt a less computationally expensive approach analogous to that
employed by Sutherland & Peltier (1994) in their numerical study of the instability



Internal Waves Radiation by a Turbulent Jet Flow in a Stratified Fluid 101

development and IW radiation in a two-dimensional jet flow. In this approach, the
absorption of internal waves radiated from the jet core is ensured by increasing the fluid
kinematic viscosity in a layer near the boundaries of the computational domain. A similar
viscous-sponge boundary condition was successfully employed recently by Taylor & Sarkar
(2007) in their LES study of internal waves radiated by a turbulent boundary layer. Thus, in

1/2
our DNS procedure the viscosity is increased by a factor of 20 in the region ‘yz + zz‘ >7,

as compared to the viscosity in the rest of the computational domain (where it is constant
and equals 1/Re). Our DNS results show that such artificial viscosity enhancement does not
affect the jet flow dynamics and ensures complete absorption of internal waves radiated
from the jet core region toward the boundaries.

In order to define the flow statistical characteristics at a given time moment (t), the x -
averaged velocity and density fields are evaluated as:

<U;>(y,z,t)=

o

1
I Ui(x,y,z,t)dx + 0, U (v, 2), (2.10)

X

L,
_[p x,Y,z,t)d. (2.11)
0

=

_ L
L

X

<p> y,zt

where i=x,y,z, andL, =36. The jet maximum mean velocity (U, ) and its width and

height (L, . ) are further evaluated as:

U, (t) =max{<U, > (v,zt)}, (2.12)
L, () -1 [<u,>(y,z=0pdy, (2.13)
L(t)= uim _[0 <U,>(y=0,zt)dz . (2.14)

The instantaneous r.m.s. fluctuations of the velocity and density fields,

U (y,z,t) =< U?— < U, >>>/? (2.15)

and

p'(y,z,t) =< p?—<p>>>12, (2.16)

and their amplitudes (the respective absolute maxima) are also evaluated.

The initial, random component of the fluid velocity is prescribed as a 3D homogeneous
isotropic turbulence field consisting of a sum of Fourier harmonics with independent
random phases and an isotropic amplitude power spectrum (Gourlay et al. 2001). We
prescribe the initial turbulence spectrum to be uniform over the wavenumber range
0.5<k<5 and equal to zero for other k’s (Fig. 1). Thus, the initial spectrum includes the
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most unstable (spiral) mode with k = 1.46 of an inviscid non-stratified circular jet flow
(Batchelor and Gill 1962), as well as a higher-k axisymmetrical Kelvin-Helmholtz instability
mode similar to that observed in the near wake flow (CBH 1993).

At present it is an open question whether the spiral shedding mode observed in the near
wake (CBH 1993) is related to the spiral instability mode of the x-periodic circular jet,
although the Strouhal numbers of the two modes are close (for the spiral mode St = k/2n =
0.2 whereas for the shedding spiral mode St = 0.175, CBH 1993). It is possible that the two
modes are related due to some correlation between the development of the instability of the
near-wake flow and the location of the separation point of the boundary layer at the sphere
and the development of the spiral shedding mode. It is important to note however that the
development of the spiral instability mode is an intrinsic property of the circular jet/wake
flow itself and not related to presence of the sphere.

Since at present there is no knowledge concerning the shape of the spectrum in the
homogeneous near wake, we prescribe an initial uniform-amplitude spectrum. The initial
amplitude of the random velocity component is prescribed to be about 40% of the mean
velocity maximum. This value is close to the turbulence intensity measured by Bevilaqua
and Lykoudis (1978) in a homogeneous turbulent wake at the distance x / D =6 behind the

sphere. The initial velocity field is further windowed with the reference profile U, (»,2)

(2.1) and made divergence-free , similarly to the initialization procedure employed by
Gourlay et al. (2001).

The initial deviation of the density from the reference linear profile is prescribed to be zero.
This is in agreement with the experimental observations of BCH showing that the effect of
the turbulent mixing in the near wake of a towed sphere is weak and its contribution to the
radiated IW field is negligible.
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Fig. 1. The initial velocity spectrum.
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Fig. 2. Temporal development of the velocity and length scales of the non-stratified jet flow.

3. Numerical results

3.1 Jet flow properties

In order to verify the performance of our numerical procedure we performed DNS with Re
= 700 of a homogeneous jet flow (where Ri = 0) and a stratified jet flow with two different
Richardson numbers (Ri = 1 and Ri = 3) and compared our numerical results with well-
known asymptotics of homogeneous and stratified far wakes.

Ly, Ri=1
UpRi=t L,Ri=1
U, Ri=3 — i=
Un " by e
- 107: z’ 1=
1 ]
| -
0.1 t -0.75\‘\\ ]
e 0.1 e e
0.1 1 10 100 0.1 1 10 100
Nt Nt

Fig. 3. Temporal development of the jet mean velocity maximum U,, (left) and its width L,
and height L, (in dashed line) (right). Asymptotics U, ~ 97 and L,.~ t*% are shown
in dotted line.
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Figures 2 and 3 compare the temporal development of the flow integral scales, such as the
mean velocity maximum, and jet width and height obtained in our DNS, with the
asymptotics U, ~t23 and U, ~t°” and L,, ~ %% observed in homogeneous and
stratified wakes in laboratory experiments (Bevilaqua & Lykoudis 1978, Spedding 1997). In
the case of a homogeneous wake, the agreement is very good for the considered times
t<20 (cf. Fig. 2). (It is important to note that since we normalize by the velocity deficit
U,/V =01, time moment ¢ = 20 corresponds to the distance x /D =tV /U, =200 behind

~ 075

the sphere.) In the stratified case, the agreement with the asymptotics U,, and

L,.~ t*% is also quite satisfactory.
Figure 4 presents the temporal development of the velocity and density fluctuations
amplitudes for Ri = 1 and 3. The figure shows that at early times (Nt <10) the velocity
fluctuations amplitudes are of the same order, i.e. the flow remains nearly isotropic. At later
times, the vertical velocity decreases much faster as compared to the horizontal velocity
components and at times Nt>30 the amplitude U', becomes almost by two orders of
magnitude smaller than the horizontal velocity amplitudes U', and U',. Thus, at that
stage, the flow becomes quasi-two-dimensional.

””””” P
Ri=1 Ri=3
14 14
0.1 = 0.1
0.01 = 0.01 =
0.001 = 0.001 =
00001 T \HHH‘ T \HHH‘ T \HHH‘ 17Tl 0.0001 T \HHH‘ T \HHH‘ T \HHH‘ 17Tl
0.1 1 10 100 0.1 1 10 100

Nt Nt

Fig. 4. Temporal development of the velocity and density fluctuations amplitudes for Ri =1
(left) and Ri = 3 (right).
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The density fluctuations amplitude p' increases and reaches its maximum at Nt~2 due to
the transfer of the initial turbulence kinetic energy into the potential energy of the displaced
isopycnals. Then p' decreases, and this reduction is accompanied by the growth of the
vertical velocity fluctuations until Nt~ 3.5. At later times the anti-phase oscillations of p'
and U', are smeared out due to their decay. Similar behavior was observed by
Dommermuth et al. (2002) and interpreted as the radiation of internal waves by collapsing
vertical velocity fluctuations in the wake.

y
_____ UZ
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Fig. 5. Velocity fluctuations spatial spectra at different time moments. Asymptotics ;= is
shown in dotted line. Here and below in Figs. 6, 7 Ri = 1.

Figure 5 shows the velocity wavenumber spectra U;(k) of the i = x, y, z velocity components
obtained in DNS for Ri = 1 at different time moments. Each spectrum is evaluated by a
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Fourier transform of the velocity i-component U,(x,y,z) over the streamwise (x) coordinate
and averaging over 9 x-realizations located in the jet core region |y* + 22‘ <0.15. The figure
shows that at early time moments Nt = 3, 6 the spectra U;(k) are of the same magnitude, i.e.
the velocity field remains isotropic. It is important to note that at these early times the
spectra are characterized by distinctive peaks at k =k, (for y-component) and k = 0.5k, (for
x-component) where k, =1.46 is the wavenumber of the spiral instability mode of the non-
stratified jet flow (Batchelor & Gill 1962). At later times (Nt =30, 90) most of the energy
becomes accumulated in the horizontal velocity components U,(k) and U, (k) with
pronounced peaks at k = 0.5k, .

The dynamics of the spectrum in Fig. 5 can be interpreted as follows. At early times (Nt <
10) there occurs a preferential growth of the most unstable mode which, in a certain sense, is
analogous to the spiral instability mode of the non-stratified jet flow (Batchelor & Gill 1962).
(This is in agreement with numerous experimental observations (cf. e.g. Spedding et al.
(1996)) showing that at early times the stratified wake flow develops similarly to the
homogeneous wake flow.) It is important to note that this instability mode is an intrinsic
property of the jet flow itself and is not directly related to the shedding instability mode of
the near-wake flow observed experimentally by CBH (1993). It is important to note also that,
in our DNS, no selected modes are initially present (cf. Fig. 1). At later times (Nt > 30) the
flow is governed by the non-linear interaction and competition between the most developed
flow modes which leads to the preferential growth of a quasi-2D mode with
wavenumber 0.5k, .

Figure 5 shows also that the fluid kinetic energy is negligible for wavenumbers larger than
kpax =20 (the corresponding spatial scale is [, =27 / k., =0.3). Thus, for the considered
spatial resolution (Ax = 0.075) the flow, including the smallest scales, is well-resolved in
DNS.

Figure 6 presents the instantaneous distribution of the flow vorticity z-component,
o, =0,U,-0,(U,+U,) in the plane (x, y) at z = 0 obtained in DNS for Ri = 1 at time
moments Nt = 6 and Nt = 90. The figure shows that at late times the vorticity distribution is
characterized by the development of large-scale vortices of alternating polarity arranged in

max min

the horizontal plane (x, y) in the vicinity of the jet streamwise axis. Similar vortex structures
(also called the “pancake” eddies) are known to be the common feature of stratified far
wakes and observed both in laboratory experiments (cf. e.g. Spedding et al. (1996)) and in
numerical simulations (Gourlay et al. (2001), Dommermuth et al. (2002)).

It is of interest to note that at times 30 < Nt < 90 the amplitude U', of the spanwise
fluctuation velocity component remains almost constant whereas the streamwise velocity
amplitude, U', , decreases with time, so that at sufficiently late times (Nt > 60) the spanwise
velocity fluctuations prevail over the streamwise fluctuations (cf. Fig. 4). This behavior of
U', and U', is more pronounced for a larger Richardson number (cf. cases Ri= 1 and Ri =
3 in Fig. 4). Figure 5 shows also that at that stage a distinct peak develops in the horizontal
velocity spectra U, , (k) at wavenumber k ~ 0.5k, . This behavior of the spanwise velocity
amplitude and the spectrum is in general agreement with the hypothesis put forward by
Spedding (2001) who pointed out that an intrinsic mean flow sinuous instability may be
responsible for the development of the large-scale coherent vortex structures in late
stratified wakes.
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Fig. 6. Instantaneous contours of the vertical vorticity component @, in the horizontal

central (x,y) plane at time moments Nt = 6 (top frame) and Nt = 90 (bottom frame). The
mean flow is from left to right along the x-axis.

3.2 Internal waves radiation

Figure 7 shows the instantaneous distributions of the r.m;s. of the density and horizontal
and vertical velocity fields, p'(y,z), U',(y,z)= (U‘§+ U‘;) and U',(y,z), evaluated from
(2.15) and (2.16) at different time moments. The figure shows that at sufficiently late times
(Nt >10) the vertical velocity fluctuations, U',(y, z) , are mostly present in the region |z [>1
whereas the horizontal component, U',(y,z), is most pronounced in a horizontal layer
|z|<1 in the region |y|<L, . At times Nt =15, 30 the vertical velocity fluctuations are most
pronounced in the elongated regions oriented at the angle 6 with respect to the vertical axis
in the range 40° <0<60°. It is a well-known property of stratified turbulence that at
sufficiently late times, after the initial collapse of 3D turbulence under the action of
buoyancy force, the vertical velocity is associated mostly with propagating internal waves
(IW) whereas the horizontal velocity is associated with quasi-2D fluid motions. Fig. 7 shows
that at later times (Nt = 60, 90) amplitude U', decreases by the order of magnitude as
compared to the time moment Nt = 15, and the regions of local maxima of U',(y,z) are
getting aligned with the vertical axis. This picture is similar to the one predicted by a linear
theory for the IW radiated by an impulsive point source (Zavolski & Zaytsev 1984, Voisin
1991). According to this theory, amplitude of IW emitted impulsively by a point source has
its maximum along the iso-phase line oriented at 6 =arctan/2 = 55" with respect to the
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vertical. At later times, at a given point, IW cancel out due to their mutual destructive
interference and are superceded by small-amplitude, non-propagating buoyancy
oscillations. (Below we discuss the application of the impulsive point theory in the
considered case in more detail.)

Figure 7 shows also that the distribution of the density fluctuation in the vicinity of the jet
core has a two-layer structure with local maxima of p' at |z|=0.5, y~+2. Now it is well
known that the fluid density variations in a pancake vortex arise as a result of the
cyclostrophic balance, where the centrifugal force inside the vortex is balanced by a vertical
pressure gradient force that is provided by a perturbation of the local density (cf. Beckers et
al. (2001)). This balance inside the individual vortex deflects isopycnals toward the vortex
center and thus creates a two-layer distribution of the local density perturbation. Figure 6
shows that the centers of pancake vortices are located in the horizontal central plane at
y~+2 . Thus it is plausible to assume that the local maxima of p' at |z/~0.5, y~+2 in the
distribution of the density fluctuation (cf. Fig. 7, Nt = 60, 90) are due to the cyclostrophic
balance inside the pancake eddies.
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Fig. 7. Contours of the x-averaged density fluctuation p (left column), and horizontal
(centre column) and vertical (right column) velocity fluctuations, U';, and U',, obtained at
time moments Nt =15, 30, 60, 90 (from top to bottom). The respective maximum values are:
0.06, 0.12, 0.028 (Nt = 15); 0.03, 0.1, 0.0085 (Nt = 30); 0.016, 0.09, 0.0028 (Nt = 60); 0.0095, 0.07,
0.0012 (Nt = 90).
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Figure 8 shows the instantaneous distribution of the vertical velocity component, U, , in the
vertical (x, z) planes at y = 0 and y = 1.5 obtained in DNS at time moments Nt = 15 and Nt =
90. The figure shows that at time moment Nt = 15, in the region sufficiently far away from
the jet streamwise axis (for |z| >1), IW isophase lines, which are associated with the regions
of maxima and minima of U, , are mostly in the direction of the mean flow and oriented at
the angle of 8~50° with respect to the vertical. The velocity distribution has a nearly
periodical spatial structure with a period of about 5 dimensionless units along the x-
coordinate. The figure shows also that at time Nt = 90 the vertical velocity amplitude is
diminished by the order of magnitude and its maxima and minima are arranged in columns
with the same spatial periodicity. These maxima and minima can be associated with small-
amplitude buoyancy oscillations which supercede impulsively radiated IW at that stage of
the flow development (Voisin 1991).
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Fig. 8. Instantaneous contours of the vertical velocity U in the vertical (x,z) plane aty =0

(left column) and y = 1.5 (right column) at time moments Nt = 15 (top frame) and Nt = 90
(bottom frame).

Figure 9 presents the distribution of the vertical velocity, U, , in the horizontal (x, y)-plane at
the distance z =3 above the jet streamwise axis obtained in DNS at time moments Nt =12,
15, 18. The figure shows that the IW patterns in that plane are similar to the IW patterns of
stationary lee-waves and characterized by a well-defined streamwise spatial period of about
5 dimensionless units (or about 4-5 sphere diameters in the dimensional form). A similar
isophase pattern was observed by BCH in the laboratory experiment in a horizontal plane at
a distance of three sphere radii away from the towing axis. Note also that this spatial period
is close to the wavelength of the spiral instability mode of the non-stratified jet flow
A, =2n/k,~4.3 for k, ~1.46 (Batchelor and Gill 1962).

Figure 10 shows the temporal development of the vertical velocity and density, U, and p,
obtained in DNS at the point located at x = 18, with the angle with respect to the vertical 8 =
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40° at the distance of ‘yz + 22‘ =3 from the jet streamwise axis for Richardson numbers Ri =
1 and Ri = 3. The figure shows that in both cases IW packet arrives at the observation point
at time moment Nt~10 which is independent of the Richardson number. At the given
point, the IW paket amplitude grows at times Nt <20 whereas the velocity U, and density
p oscillate with a phase shift n /2 typical of a monochromatic, linear internal wave (Phillips
1977). At times Nt > 30 the oscillations of U, and p become incoherent and IW packet
amplitude decreases. At sufficiently late times (Nt > 60) there remain only small-amplitude
oscillations of the velocity and density with the buoyancy frequency N. These small-
amplitude oscillations are similar to the buoyancy oscillations which supercede internal
waves, which are mutually cancelled due to the destructive interference as their
wavelengths become of the order of the source diameter (i.e. of order one in the considered
case) (Voisin 1991).

Figure 11 presents spatially averaged frequency spectra of the vertical velocity obtained in
DNS for Richardson numbers Ri = 1 and 3. Each spectrum was obtained by Fourier
transform of time series U, (¢
cylindrical surface with radius

and averaged over 100 points located uniformly at a
y? zz‘ =3 in the range 0° <0 <90". The figure shows that
the velocity spectra are characterized by a well pronounced peak at the frequency

o/ N 0.7 which corresponds to the IW propagation angle arccosm /N ~ 45" . This value is
close to the prediction of the linear theory stating that the amplitude of the waves radiated
impulsively by a small-size source has a maximum at 0 = arctan+/2 ~ 55° . This is also in
general agreement with the data in Figs. 7 and 8 discussed above.

Figure 12 presents the dependence of the internal waves amplitude (p;,) vs. the inverse
Richardson number (Ri™) obtained in DNS for two different values of the Reynolds
number, Re = 400 and 700. The IW amplitude was evaluated in each DNS run as a
maximum of the r.m.s. density fluctuation p'(y,z,t) (2.16) at the distance ‘ v+ 22‘ =3 from
the jet streamwise axis. (Note that since we consider the linear reference density profile,
p'(y,z,t) is also equivalent to the average fluid particle vertical displacement amplitude i.e.
the average IW amplitude.). The DNS results show that, for all considered Ri, the maximum
of p' is observed at time moment Nt = 15 in the range 40° <0 <60°. Figure 12 shows that
IW amplitude decreases with increasing Ri. The figure also shows an asymptotic estimate
for the amplitude of the impulsively emitted internal waves (in dotted line).

Below in Section 4 the application of the impulsive source theory to explain the observed
IW kinematics and dynamics is discussed.

4. Impulsive source model

Radiation of internal waves by the jet turbulence occurs due to the transfer of the kinetic
energy of the vertical velocity fluctuations into the initial potential energy of isopycnal
displacement and its further redistribution between the kinetic and potential energy of
waves and turbulence. This transfer is most pronounced at the early stage of the jet flow
evolution when the vertical velocity fluctuations are significant (i.e. for Nt < 10, cf. Fig. 4).
The results in the previous section show that the properties of IW radiated by the jet flow
turbulence are to some degree analogous to the properties of the internal waves radiated by
an impulsive source. Let us consider this analogy in more detail.
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Fig. 9. Instantaneous contours of the vertical velocity U in the horizontal (x,y) plane above
the jet streamwise axis at z = 3 at time moments Nt = 12, 15, 18 (from top to bottom).

In the considered case, an IW radiation source function can be evaluated from the equation
for the vertical velocity derived by Phillips (1977). In this equation, the non-linear terms are
not discarded but can be regarded as an effective source of IW. This equation is derived in
the inviscid case in the form:

2
g?(vzuz )+ N2V2U, = Q(x,,2,1) @1)

where the IW source function is

o° ou o b ol ou
xX,Y,z,t)= U.—* |-Vl —+—| U, —= 4.2
Qy.2 axuazat[ jﬁxj] h{ Vo, ét{ I o ]} (42
2?9 _, & &

o §+¥, hEax_z-'_W are the

full and horizontal Laplasian operators, respectively; summation over the repeated indexes

In (4.1) and (4.2) the notations are as follows: V> =
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a=1,2 and j = 1, 2, 3 is performed; (x;,x,,%3)=(x,y,z) are the Cartesian coordinates;

u,,u,,us)=U,,U,,U,) are the fluid velocity components; and b =—-Rip is the buoyancy.
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Fig. 10. Temporal development of the vertical velocity and density, U, and p, obtained in
DNS atx =18 and 6 = 40° (the angle with respect to the vertical) at the distance ‘yz +2%=3
from the jet streamwise axis for Richardson numbers Ri =1 (top frame) and Ri = 3 (bottom
frame).

Figure 13 shows an instantaneous distribution of the source function Q(x, z, y = 0) evaluated
in DNS in the central vertical plane at time moments Nt = 3 and 6. The figure shows that the
distribution of Q is quite inhomogeneous and confined to the jet core region. Therefore, the
effective source diameter is of the order of the initial jet flow diameter. The figure indicates
also that the growth of the modes with wavenumbers k ~k, and k= 0.5k, in the velocity
spectra at time moments Nt < 10 (Fig. 5) leads to a modulation of the source function
amplitude along the streamwise coordinate . (In Fig. 13 this modulation is more pronounced
at time moment Nt = 6.)

Figure 14 presents the temporal development of the volume-averaged dispersion of the IW
source function, < Q(x, y,z,f)* >'""?, obtained in DNS for Ri = 1 and Ri = 3. The figure shows
that, for all Ri, the dispersion increases by t = 2.5 by the order of magnitude. The figure
shows also that at later times < Q(x, y,z,7)* >''? decays, so that its amplitude is reduced by
more than half by t = 5 and becomes negligible at Nt > 10. From the spectra in Fig. 11 the
period of internal waves having the maximum amplitude can be evaluated as
NT,, =27N/w~8 (cf. Fig. 11) and is almost twice as large as compared to the period of the
IW source function half-decay.
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Fig. 11. Spatially averaged frequency spectra of the vertical velocity obtained in DNS for
different Richardson numbers.

Thus Q in (4.1) can be regarded as an impulsive source function which brings about IW
radiation by the jet flow turbulence. The temporal growth and maximum amplitude of this
source function is controlled by the non-linear flow dynamics, not by buoyancy. Let us now
make some estimates provided by the impulsive source theory (Zavolskii & Zaytsev 1984,
Voisin 1991, BCH 1993) concerning the kinematics and dynamics of the radiated internal
waves.

The time interval during which the IW packet, emitted impulsively by the source (S) at the
angle 0 with respect to the vertical (cf. Fig. 15), comes to the observation point (O) located at
the distance r = ‘yz +22
group velocity (c,) of internal waves with streamwise wavenumber k and the isophase line

‘ , can be estimated with the use of the linear theory as follows. The

at the angle 6 with respect to the vertical is evaluated as:

Cq :%SiHZO. (4.3)

Thus the time interval, Nt,;, during which the IW wave packet comes from the source (S) to
the observation point (O), is evaluated as:
2kr

Nt, = . 4.4
17 sin20 (44)

Eq. (4.4) shows that time interval Nt; does not depend on N in agreement with the DNS
results in Fig. 10. Substitution of r = 3, f=arctan~/2, and k =k,~1.3 into (4.4) gives the
estimate Nt; =8, which is also in good agreement with the DNS results in Fig. 10.
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Fig. 12. The internal waves amplitude (p;, ) vs. inverse Richardson number obtained in DNS

for different Reynolds numbers. The dotted line shows the asymptotic solution for the
amplitude derived from the linear theory for an impulsive point source.

Figure 10 shows that at sufficiently late times (Nt > 40) the density oscillations at the
considered distance from the jet streamwise axis (r = 3) are damped. The time moment
(Nt, ) after which the IW amplitude decays at a given location can be estimated as follows.
The wavelength A of IW emitted impulsively by a source (S) at the angle 6 with respect to
the vertical at the distance r and coming to the observation point (O) at time ¢ (cf. Fig. 15)
can be evaluated as:

N 2nr
Ntsin® - (4-5)

The theoretical analysis of the internal waves field generated by a sphere performed by
Voisin (1994) shows that if A becomes of the order of the sphere radius, the destructive
interference of the waves emitted from different locations on the sphere leads to a decay of
the wave amplitude. In the considered case, the cutoff wavelength is of the order of the jet
initial diameter, i.e. A, =1. Substitution of A =4, in (4.5) gives

2nr

Nt, =

2% N0 (4.6)
For r =3 and 0 =arctany2 we obtain from (4.6) an estimate Nt, ~ 30, which is also in good
agreement with the DNS results (Fig. 10). The linear theory also predicts that at times

Nt >> Nt,, the incoming waves are mutually cancelled, and there remain only buoyancy
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oscillations of the density with the frequency N whose group velocity is identically zero.
These buoyancy oscillations are present in Fig. 10 (for Nt > 40) and in the distributions of the
vertical velocity in the form of columnar disturbances at time moment Nt = 90 in Figs. 7, 8.
The asymptotics for the IW amplitude in Fig. 12 is derived as follows. Using the same
schematic in Fig. 15 the following estimate can be obtained for the amplitude of internal
waves ( p;, ) emitted impulsively by the source (S) and coming to the observation point (O)
at time £ (cf. e.g. BCH):

Fig. 13. Instantaneous contours of the IW source function Qp, in the vertical central plane
at time moments Nt = 3 (top frame) and Nt = 6 (bottom frame).

sinG[Nt|cos GH 1/2
Piw ~ N . (47)
7

Eq. (4.7) shows that p;, increases with time. As it was discussed above, the IW amplitude
increases until time when the wavelength of incoming waves becomes of the order of the

source size, i.e. for Nt < Nt, . Thus, the maximum amplitude (p;>) can be evaluated from
(4.6) and (4.7) as:

max
1w

N |:7t|sin 29|] 1/2

7 (4.8)

Eq. (4.8) shows that IW amplitude is inversely proportional to N, so that p™ ~ Ri ">, (Note
that the jet flow Froude number equals Fr; =1/ JRi , so that pR¥ ~ Fr;.) This estimate is in

good agreement with the results in Fig. 12 for sufficiently small amplitudes (for p,, < 0.03).
The growth of p;, saturates for larger amplitudes, probably due to nonlinear effects, and

increases for larger Reynolds number.
5. Conclusions and discussion

In the present paper, direct numerical simulation (DNS) has been performed in order to
study the process of internal waves radiation by a stratified turbulent jet flow. An initially
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circular, turbulent jet flow with a Gaussian profile of the mean streamwise velocity
component in a fluid with stable, linear density stratification is considered which models the
flow created in the far wake of a sphere towed in a stratified fluid at large Froude and
Reynolds numbers. The DNS results show that at early times (Nt <30, where N is the
buoyancy frequency) there occurs a collapse of the vertical velocity fluctuations which
brings about the radiation of internal waves (IW). The characteristic spatial period of these
waves is found to be close to the wavelength of the spiral instability mode of a non-stratified
jet flow. The IW amplitude decreases with increasing the flow global Richardson number
and is well described by the asymptotics p, ~ Ri™*°. At late times (Nt > 60) the jet flow

becomes quasi-two-dimensional and is dominated by large-scale pancake vortices. At that
stage, internal waves are superseded by non-propagating, columnar, small-amplitude
buoyancy oscillations confined to a central vertical layer with a thickness of the order of the
jet width. A linear model is proposed where the jet turbulence collapsing under the
stabilizing effect of the buoyancy forces, is regarded as an impulsive source of IW radiation.
The kinematics and dynamics of the internal waves observed in DNS are found to be in
good agreement with the model prediction.

Note that a relatively narrow IW frequency range (40° <arccosm /N <60°), similar to the

one observed in our DNS, has been also observed in mixing-box experiments (Dohan &
Sutherland 2003), in a flow over a vertical obstacle (Sutherland & Linden 1998), during the
collapse of a mixed patch (Sutherland et al. 2007) and in LES of a density-stratified
boundary layer (Taylor & Sarkar 2007). In these works, several models were proposed to
explain the observed IW frequency range, and among them, perhaps, two pertain to the
considered case of IW radiation by a temporally developing turbulent jet flow. Dohan and
Sutherland (2003) employed stability criteria derived by Sutherland (2001) for low- and
high-frequency waves which show that the largest critical IW amplitude corresponds to the

waves propagating at 6 =45° .

Nt

Fig. 14. Temporal development of the volume-averaged dispersion of the IW source function
normalized by its initial value for different Richardson numbers. Note that the graph on the
right is scaled with the buoyancy frequency.
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Other waves become unstable at a lower amplitude and their breaking would explain the
observed frequency selection. However, in our case the wave amplitude is much smaller

than the critical value Ay, /%, ~0.07 (cf. Fig. 4 where plv ~0.05 and pXv /A, <0.01 for
A, =5) and this mechanism is not applicable. Taylor and Sarkar (2007) developed a linear
viscous model to estimate the decay in wave amplitude. Waves with high and low
frequencies have smaller vertical group velocities and dissipate more as compared to the
waves with propagation angle in the vicinity of 6~27°. Thus the viscous dissipation may

cause the observed selected IW frequency range. However, our DNS results show that the
selection of the IW propagation angle occurs in the close vicinity of the jet core region

(|| > 1) where viscous diffusion effects have not yet accumulated and are negligible as far
as the frequency selection is concerned. Therefore, the impulsive source model considered in

the present paper provides the most plausible explanation of the IW kinematics and
dynamics observed in DNS.

Fig. 15. Schematic of the radiation of the IW packet by an impulsive point source (S) with the
group velocity ¢, at the angle 6 with respect to the vertical axis at the distance r from the
observation point (O).
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1. Introduction

Turbulent bubbly flows have attracted a lot of attention because of their importance for
many practical applications such as flows in chemical plants and nuclear power plants.
Enhancement of heat transfer by bubble-induced turbulence also attracts a lot of attention
from the view point of energy saving. Many studies have been conducted for the motion of
bubbles and the characteristics of heat-transfer in turbulent bubbly flows. It is expected that
the research on turbulent bubbly flows is accelerated by fully resolved simulations of
bubble-turbulence interaction (Tryggvason et al., 2011).

The characteristics of bubbly upflow strongly depend on the motions of bubbles and
resulting void fraction distribution in the flow. Serizawa et al. (1975) found that the local
void fraction is high near the walls and is lower in the core region of upflow in a pipe. Liu
(1993) also found in the experiments of turbulent bubbly upflow in a vertical channel that
the void fraction has peaks near the walls for the bubbles smaller than 5-6mm, while it has a
peak in the core of the channel for the bubbles larger than 5-6mm. Lu & Tryggvason (2008)
also showed in their direct numerical simulations of turbulent bubbly upflow in a vertical
channel that nearly spherical bubbles tend to concentrate on the near-wall regions, while
strongly deformable bubbles tend to be expelled from the near-wall regions. They also
showed that the turbulence structures are changed by the motions of bubbles. The detailed
mechanism of turbulence modulation due to the bubbles, however, has not been fully
clarified yet.

Some experimental studies have been conducted for heat-transfer enhancement by the
injection of bubbles. Tamari & Nishikawa (1976) showed in their experiments of laminar
natural convection heat transfer in water from a vertical plate that the heat transfer is
enhanced by the injection of air bubbles. The enhancement of heat transfer by bubble
injection was studied further in detail by Tokuhiro & Lykoudis (1994) and Kitagawa et al.
(2008, 2010). However, the mechanism of the heat-transfer enhancement has not yet been
fully clarified especially in turbulent flows.

In the present study, direct numerical simulations have been conducted for turbulent bubbly
upflow between two parallel heating walls in order to clarify its heat transfer characteristics.
The mechanism of the heat-transfer enhancement is examined by performing simulations
with different values of control parameters. The performance of the heat-transfer
enhancement is discussed based on the numerical results.
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2. Direct numerical simulations of bubbly flows

2.1 Configuration

Figure 1 shows the spatial configuration considered in the present study. The x, y and z axes
are assigned to the streamwise, wall-normal and spanwise directions, respectively. The
gravitational force is assumed to point to the negative x direction. Here, we consider the
system where the flow is heated with a uniform heat flux from both the walls and the mean
temperature increases linearly in the streamwise (or vertical) direction. The wall heat flux,
g, » is determined so that the energy (enthalpy) of the system is conserved. In this situation,

the wall heat flux is kept nearly constant for stationary turbulence.

qy = const.

Fig. 1. Configuration.

It is assumed that the fluids are incompressible for both of the liquid (or continuous) and
gas (or dispersed) phases in the present study. The buoyancy force originated from the non-
uniform spatial distribution of temperature is assumed to be negligibly small. It is also
assumed that the fluid properties do not depend on the temperature.

2.2 Basic equations

In this study, simulations of the bubbly flow are conducted by using VOF (Volume of Fluid)
method. In the VOF mothod, the fraction of the bubble gas, F, occupying each
computational grid cell is advected by using the equation

gj =T iﬁ ’ )
t Ox;

where x = (x1,x2,x3) = (x,y,z) denotes the position, and u = (u1,uz,us) = (u,v,w) represents the
fluid velocity. In the present study, summation convention is applied to repeated subscripts
if not otherwise specified.

The motions of incompressible fluid are governed by the Navier-Stokes (momentum)
equations

ou; ou; a(p-P) 07y
—L 4+ Ll=— + +f . —(p— 0 + P01, 2
p( o Uy axkj 63(,- 6x]- foz (,0 <p>)g il ﬂ il ( )
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supplemented with the continuity equation

2o, ®)
oxy,
where
ou; ou.
= | —L 4
Tij ﬂ(@xi axjj 4)

is the viscous stress. Here, p and u denote the density and viscosity of the fluid. Their
values for each grid cell are respectively given by the simple average,

p=Fp;+(1-F)p,, ®)
and the harmonic average,

l:Fi+(1fF)i, (6)

H Hq He

of the two fluids. The subscripts d and c¢ denote the dispersed and continuous phases,
respectively. p is the pressure and P denotes the mean pressure linearly decreasing in the
vertical direction. f_represents the volume force associated with the interfacial surface
tension of the bubbles, and g denotes the gravitational acceleration. ( -) represents the
spatial average over the whole computational domain. The last term in Eq.(2) represents the
total driving force exerted on the fluids flowing through the channel, and

p=-L (o).

T )

For stationary turbulence, the temporal average of S equals to 7y, /5, where 7}, represents
the wall shear stress and & denotes the channel half width.

Since the mean temperature increases linearly downstream, the temperature T is
decomposed as T=Gx—-0, where G denotes the mean temperature gradient in the
streamwise direction and © represents the temperature variance. The governing equation
for ® (or energy equation) is described by

(pCp) @“‘”k@—c% _9 k@ i 8)
ot 0x;, Ox;| 0x;
where
pCP = decPd + (1 _F)chPc (9)
and
1 1 1
S =F—+(1-F)— 10
k k, ( )kc 10

represent the volume-averaged heat capacity (per unit volume) and heat conductivity,
respectively. Here, C, denotes specific heat.
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2.3 Control parameters

The parameters which control the system considered in the present study are the channel
Eo6tvos number Eo, Morton number M, Archimedes number Ar,
dispersed-phase Prandtl number Pr,=v,/a;, continuous-phase Prandtl number

Reynolds number Re,,,
Pr. =v,/a. , the density ratio p,/p, , the viscosity ratio u; /. , and the ratio of specific heat,
Cpy/Cp. , where a;=k;/(p;Cps) and a.=k./(p.Cp.) are thermal diffusivities in the
dispersed and continuous phases, respectively. First four parameters are defined as

2 4 3
Rem — 2u7'n61E0 — Apng ,M _ g:uzc A3p,A1’ _ pcAngdO , (11)
v, o pio M

where U, = <u> , v, dy, and o denote the mean velocity, kinematic viscosity, bubble
diameter, and the surface tension coefficient, respectively. Ap=p,—p,; represents the
density difference between the two phases.

The wall units are used to normalize the time, length, velocity and temperature. The friction
velocity is defined by u, =7,y /p,. The friction time and the friction length are defined by
t,=v, / u? and I, =v,/u, , respectively. The friction Reynolds number is defined as

Re, = ud _& _Re, ) (12)
v, Lo2u;

c

where the superscript ‘+’ represents the values normalized by the wall units. The
temperature is normalized by the friction temperature defined by

0, -—w_ (13)
i chPc U,

where g, denotes the wall heat flux.

Eotvos number, Eo, represents the ratio of the buoyancy and surface-tension forces, while

Archimedes number, Ar, represents the ratio of the buoyancy and viscous forces. Morton

number, M, is not independent from E6tvos number Eo and Archimedes number Ar and

is expressed as M = Eo® / Ar? . The ‘buoyancy parameter’, which is defined by

2 3
Buo B _|Re: (@j , (14)
ghp | Ar \ 6
is also an important parameter. The buoyancy effect of bubbles may be large when this

parameter is small.
The mean temperature

_{(pCp)ou) (15)
" {(PCr)u)
is used as the representative temperature of the fluid in the present study. The heat transfer

coefficient can be defined as

hy=—Iw (16)
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where ©,, is the averaged temperature variance at the walls. The enhancement of heat
transfer can be estimated by the Nusselt number which is defined by

_ 25]1[ _ ZReT Prc (17)

Nu = .
kc ®:rn - ®;\/

2.4 Numerical methods
2.4.1 PLIC-VOF algorithm

In the present study, we use a PLIC-VOF (Piecewise Linear Interface Calculation - Volume
of Fluid) method to capture the interface of the bubble. The position of the interface is
determined by the volume fraction F of the bubble. F =1 represents a cell filled with the gas
(dispersed-phase fluid) of the bubble, while F=0 indicates that the cell is filled with the
continuous-phase liquid. The cells of 0 < F <1 include the interface. The time evolution of F
is estimated with a PLIC-VOF algorithm (Rudman; 1998, Scardovelli & Zaleski, 2003). In
PLIC-VOF algorithm, we take account of the slope of the interface. Young and Parkar's
method is used to estimate the normal vectors of the interface from the values of F in
adjacent cells (Parker & Youngs, 1992). A mass-conserving scheme which also satisfies the
consistency condition (0 < F <1) is applied for the advection of the VOF function. The EI-LE
(Eulerian implicit Lagrangian explicit) scheme (Scardovelli & Zaleski, 2003; Aulisa et al.,
2003; Aulisa et al., 2007), which is an advection scheme originally designed for two-
dimensional incompressible velocity field, is applied for the three-dimensional (3D)
incompressible velocity field. The extension is conducted by decomposing the 3D velocity
field into three two-component velocity fields by the use of Fourier transformation in the x
and z directions.

2.4.2 Interfacial tension
In the continuum surface force (CSF) method, the interfacial tension force is calculated as

f, =oxnd;, (18)

where o is the coefficient of the interfacial tension, x is the curvature, n is the normal to
the interface, and Jg is a delta function concentrated on the interface. The interfacial tension
force in Eq.(2) is calculated by using Eq.(18) and the relation nds =—-VF , which holds in the
continuum limit. The curvature, x, is calculated with a high degree of accuracy by using
height functions (Lorstad & Fuchs, 2004), which effectively eliminates spurious currents for
a static drop (Francois et al., 2006).

2.4.3 Collision between bubbles

In a general VOF method, two interfaces inside the same grid cell cannot be distinguished.
Thus, coalescence occurs when two bubbles are very close to each other. To avoid this type
of coalescence, separate VOF functions are assigned to the bubbles. A repulsive force is
applied when two bubbles come very close to each other to avoid the overlap of the bubbles.
Suppose Bubble 1 and Bubble 2 approach each other and their VOF functions are given by
F, and F,. We make use of their smoothed functions F, and E, which are obtained by the
convolution using the kernel:
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1-6(r/y) +6(r/y)°  (r]y <1/2)

K(r,7)= 2(r/7)’ (1/2<r/y<1) (1)
0 (1<r/y)
The repulsive force
fy, =—CF,VE,, (20)

is exerted on Bubble 1, where C is a positive constant. Similarly, the force

fr, = —CEVE,, (21)

is exerted on Bubble 2. The integral of fz; +fz, over the whole computational domain is

exactly zero. Therefore, this repulsive force does not affect the total momentum in the
system. In the present study, we set y=3Ax — 4Ax, where Ax is the grid spacing.

Smoothed VOF functions are also utilized for the estimation of the fluid and thermal
properties in Egs.(5), (6), (9) and (10) with y =2Ax (Lorstad & Fuchs, 2004).

2.4.4 Time integration and spatial discretization

The momentum and energy equations are solved on a collocated grid by using the finite
difference schemes. All of the velocity components and the pressure are defined at the
center of the grid cell. The time-integration is based on a fractional-step method where a
pseudo-pressure is used to correct the velocity field so that the continuity equation is
satisfied. A balanced force algorithm developed by Francois et al. (2006) is used to suppress
unphysical flows (or spurious currents) resulting from the unbalance between the interfacial
tension and the pressure difference across the interface. Poisson's equation for the pseudo-
pressure is solved by using a multigrid method.

The QUICK method (Leonard, 1979) is applied in the finite differencing of the convection
terms of momentum and energy equations. The second-order central difference scheme is
applied for the finite differencing of the viscous terms of the momentum equations and the
diffusion term of the energy equation. The 2nd-order improved Euler method is used for the
time-integration of the convective and viscous (or diffusion) terms (Rudman, 1998). The

velocity field at " + At /2 is used to advect the VOF function.

2.5 Validation of numerical scheme

We compared the rise velocity of a bubble in otherwise quiescent fluid with that in Bunner
& Tryggvason (2002). The bubble rise velocity can be described by the bubble Reynolds
number, Re,; =u,d,/v. , where u, and d, denote the rise velocity and the bubble diameter,
respectively. Numerical parameters were the same as that in Bunner & Tryggvason (2002).
The computational conditions are summarized in Table 1. There cases with different grid
resolutions were examined with 32x32x32, 64x64x64, and 128x128x128 grid points.
For the three cases, the bubble diameter equals to 15.5Ax, 31.1Ax, and 62.2Ax,
respectively. Here, Ax denotes the grid spacing. Periodic boundary conditions were
imposed in all directions. Domain size was set to be 27 x 27z x 27 .
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E6tvos number 1.0
Archimedes number 900
Density ratio 0.02
Viscosity ratio 0.02
Void fraction 0.06

Table 1. Computational conditions for a rising bubble.

Fig. 2 shows the time evolution of the bubble rise velocity for the three cases. The horizontal
straight line of Re , =31.74 represents the terminal velocity in the case of d, =389Ax in

Bunner & Tryggvason (2002). The tendency of convergence is clearly seen as the grid
resolution is increased. This indicates the validity of our numerical scheme.

30+

20r
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323
64°
128°
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e/ d)oAs
Fig. 2. Time evolution of rise velocities for a single bubble.

It was found by an oscillation test that more than 24 grid points per bubble diameter are
needed to simulate oscillation motions of bubbles. A static drop test was also conducted
under the same condition as in Francois et al. (2006) to find that the magnitude of the
spurious current is as small as theirs.

2.6 Computational conditions

Since many grid points are needed to resolve the fluid motions around and inside the
bubbles, simulations are limited to low Reynolds numbers with small computational
domains. We utilize so-called ‘minimal turbulent channel’ in the present study. The
simulations are performed on the domain of z5x 28§ x (7 /2)s as in Lu & Tryggvason (2008).
In the simulation of Lu & Tryggvason (2008), the constant pressure gradient to drive the
flow was set so that the friction Reynolds number Re, was 127.2. Therefore, the size of the
computational domain was 400 x 254.4x200 in wall units, and the domain was sufficiently
large to sustain turbulence, as was shown in Jimenez & Moin (1991). The resulting channel
Reynolds number was 3786 in their simulation of the single-phase turbulent flow. In their
flow laden with nearly spherical bubbles, the channel Reynolds number was reduced to less
than 2000, which may be too low to examine turbulence statistics of a bubbly flow. In the
present study, the channel Reynolds number is set at 3786, and the volume flow rate is kept
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constant. Notice that the friction velocity (and the friction Reynolds number) is generally
changed by the effects of the bubbles.

Non-slip boundary conditions are imposed in the wall-normal direction for the velocity
components. Periodic boundary conditions are imposed in the x and z directions for the
velocity, the pressure variance,p—P, and the temperature variance, ®. As mentioned

above, we assume a constant temperature gradient in the vertical (streamwise) direction. We
impose a uniform heat flux from both walls. In the present study, the energy (enthalpy) of
the system is kept constant, so that the instantaneous wall heat flux g, is given by

1 26—
Gw =5G[, PCott (y)dy. (22)
Here, - represents the spatial average in the x and z directions.

2.6.1 Bubbly flow

The simulations are performed with 256 x 256 x128 rectangular grid cells. We set the fluid
density inside the bubbles (density of the dispersed-phase fluid) to be one-tenth of that of
the liquid (continuous-phase fluid) (p,/p. =0.1), and we set the viscosities to be equal

(#44/ 1. =1.0) to reduce the computational cost as in Lu & Tryggvason (2008). Air bubbles
with a diameter of 1-2mm in water are considered in the present study. E6tvos number,

Morton number, and Archimedes number of the bubbles are 0.36, 2.91x107'°, and 12700,
respectively. These parameters correspond to a 1.64mm air bubble in the fluid whose
viscosity is 1.84 times higher than that of the water at room temperature.
Twelve bubbles with a diameter of 0.46 are introduced randomly into the turbulent single-
phase flow in the channel. Computational conditions are summarized in Table 2.

Although most of the parameters employed here are quite close to those in Lu &
Tryggvason (2008), the buoyancy parameter, Bu, is considerably higher than their value of
0.018. This indicates that the buoyancy effects are less important in our simulation. In order
to assess the importance of the buoyancy effects, we conduct a simulation for neutrally
buoyant droplets, where Bu is infinite , as will be explained in 2.6.2.

The thermal properties employed in the present simulation are summarized in Table. 3. The
Prandtl number for the liquid (continuous-phase fluid) is set at a low value of 2.0 (Pr. =2.0)

to maintain high numerical accuracy. The Prandtl number for the gas (dispersed-phase
fluid) is also set at 2.0 (Pr;=2.0). In this case, the ratio of heat capacities per unit
volume, p,Cp;/p.Cp. , is 0.1 and the ratio of thermal conductivity, k,/k,, is 1.0, respectively.
Hereafter, we call this run Case B1. For comparison, three cases (Cases B2-B4) with different
thermal porperties are simulated. In Case B2, we change the Prandtl number of the
continuous-phase fluid to 1.0 to examine Prandtl number dependence of the heat transfer
characteristics of the turbulent bubbly flow. In Cases B3 and B4, we change the thermal
properties inside the bubbles. In Case B3, the thermal conductivity inside the bubbles is set
at1/10 of that in the surrounding liquid in order to examine the heat insulating effect due to
the bubbles. In Case B4, the specific heat of the gas inside the bubble is set to be 10 times
larger ( p,Cpy/p.Cp. =1.0) to clarify the effect of lower heat capacity inside the bubbles.

In order to check the accuracy of the simulation, we have conducted a simulation under the

same physical conditions with a lower grid resolution. The parameters for this simulation
are summarized in Table 4.
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Channel Reynolds number 3786
Domain size mOx28%x (7 [2)0
Number of grid points 256 x 256 x 128
o Attt =454%x107
Time increment
At/T_ =0.063
AxT =Az" =2.00
Grid resolution
Ay*=038-2.17
Density ratio 0.1
Viscosity ratio 1.0
Diameter of bubbles 0.45(~ 32.6Ax)
Number of bubbles 12
Eotvos number 0.36
Morton number 291x1071°
Archimedes number 1.27 x10*
Void fraction 0.04
Buoyancy parameter Bu 8.17x1072

Table 2. Computational conditions for the bubbly flow. T represents the timescale of the

2
smallest resolved capillary wave, and is described by T, = [( P20+ pg)(Ax)? / 7[O'j| Y .

Case Bl B2 B3 B4
Prandtl number (liquid) 2.0 1.0 2.0 2.0
Prandtl number (bubble) 2.0 1.0 20.0 20.0
Ratio of specific heat 1.0 1.0 1.0 10.0
Ratio of thermal conductivity 1.0 1.0 0.1 1.0
Table 3. Thermal properties for the bubbly flow.
Number of grid points 192 x192 x96
Time increment At" =7.89x10°
At/T, =0.073

Grid resolution Ax'=Az =264

Ay" =0.51-2.79

Diameter of bubbles 0.45(~ 24.4Ax)

Table 4. Computational conditions for the simulation with lower grid resolution.

2.6.2 Droplet flow

As mentioned above, we conduct a simulation for neutrally buoyant droplets in order to
assess the importance of the buoyancy effects. The density ratio of the dispersed-phase fluid
is changed to 1.0 from 0.1 in the bubbly flow. Computational conditions are summarized in
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Table 5. Two cases with different Prandtl numbers are examined. Since the fluid density is
uniform throughout the computation domain, the pressure Poisson equation is directly
solved by the use of fast Fourier transform. The time increment and grid spacings are
At =7.56x107, Ax* =Az" =234, Ay" =0.35-1.93.

Case D1 D2

Density ratio 1.0 1.0
Viscosity ratio 1.0 1.0
Prandtl number (continuous) 2.0 1.0
Prandtl number (dispersed) 2.0 1.0
Ratio of specific heat 1.0 1.0
Ratio of thermal conductivity 1.0 1.0

Table 5. Computational conditions for the droplet flow.

2.6.3 Single-phase flow

For comparison, a long simulation without bubbles was also conducted at the same channel
Reynolds number of 3786 and Prandtl numbers of Pr.=1,2- The computational conditions
are summarized in Table 6. Statistical quantities were obtained by taking averages over the
period of about 30,000 in wall units. The time-averaged friction Reynolds number was 127.2
as in Lu and Tryggvason (2008).

Number of grid points 96 x192 x96
Grid type Collocated grid
Convection term QUICK

Time increment

At" =4.66x107

Grid spacing

Ax" =4.16,Az" =2.08
AyT=0.30-2.42

Table 6. Computational conditions for the single-phase flow

Number of grid points

48x128 x 48

Grid type

Staggered grid

Convection term

2nd central
(consistent scheme)

Time increment

At" =4.66x107

Grid spacing

Ax* =833,Az" =4.16
Ay* =0.30-4.12

Table 7. Computational conditions for the centered 2nd-order scheme.

In order to estimate the effects of the numerical diffusion caused by the QUICK scheme, a
simulation was conducted by using the centered 2nd-order scheme (consistent scheme) for
the convection terms in a staggered grid system (Kawamura et al., 1998). It is found that the
amplitude of the streamwise component of vorticity is slightly (about 1.5%) lower in the
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case with the QUICK scheme than that with the centered 2nd-order scheme. The Nusselt
number for higher Prandtl number of Pr.=2 is also slightly (about 1%) lower. It can be
concluded that the effects of the numerical diffusion due to the QUICK scheme are small.

3. Results and discussion

The turbulent bubbly (or droplet) flow and the temperature field reached a fully developed
state about ¢* =1000 after the injection of the bubbles (or the droplets). After the turbulence
reached the fully developed state, the simulation has further been conducted for the period
of 700¢f, (or 1400t.) for the bubbly (or droplet) turbulent flow to obtain statistical
quantities. The longer simulation for 2900 ¢, has been performed for the bubbly flow with
the lower grid resolution.

Since the simulations are performed under the condition of constant volume flow rate, the
wall friction and therefore wall units are generally changed by the injection of the bubbles.
Hereafter, the normalization of physical quantities is performed by the use of either the wall
units, u_,t.,I.,0., in each flow or those, u.,t.,l,9,0,, in the single-phase flow,
depending on the situation. The quantities normalized by the wall units in the single-phase
flow are denoted by the superscript "+0".

3.1 Flow structures of turbulent bubbly flow

3.1.1 Wall shear stress and friction Reynolds number

In table 8, the relative magnitude of the wall shear stress 7}, /7y, and the friction Reynolds
number Re,/Re,, are shown for the bubbly and droplet flows. Note that these two
quantities are related with the wall units as

2
Re, :lLo _ U Tw by _ Re, 23)
RerO lr Uz ' Two tr ReTO

when 6 and v, are fixed. The wall shear stress is increased by the factor of 1.65 (or 1.37) for
the bubbly (or droplet) flow.

Tw/Two Re, /Re,
Bubbly flow 1.65 (1.61) 1.28 (1.27)
Droplet flow 1.37 1.17

Table 8. Wall shear stress and friction Reynolds number. The values in the parentheses
represent those for the bubbly flow with the lower grid resolution.

3.1.2 Bubble motions and vortices

Fig. 3(a) shows a typical snapshot of the bubbles and the vortical structures visualized by
the second invariant of velocity gradient tensor, Q* =0.0125. It is clearly seen that the
bubbles tend to collect on the near-wall regions of the channel. The bubbles are slightly
deformed form the spherical shape. As is shown in Fig. 3(b), the droplets are distributed
rather uniformly throughout the channel though some droplets are located close to the walls
as in the case of the bubbly flow.
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It is seen in the case of the bubbly flow that the vortices are locally activated by the bubbles
in the near-wall regions. In the case of the droplet flow, strong vortices are observed even in
the central region of the channel. Notice that the normalized values of Q are used for
visualization in Figs. 3 and that the vortices are considerably strengthened due to the
injection of the bubbles.

Figs. 4(a) and 4(b) show the time evolution of the locations of the bubbles and the droplets,
respectively. The bubbles rise along the walls almost all the time. As is shown in Fig. 4(c),
the void fraction has sharp peaks near the walls as a result of bubble accumulation toward
the walls. Horizontal motions are much more noticeable for the droplets. Some droplets rise
along the walls as the bubbles, however. This is also confirmed by the profile of the volume
fraction of the droplet in Fig. 4(c).
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Fig. 4. The path of (a) bubbles and (b) droplets. (c) Profiles of volume fraction.
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Fig. 5. Profiles of streamwise vorticity squared that is normalized by (a) t,5 and (b) ;%.
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Fig. 5(a) shows the profiles of the streamwise vorticity squared which is normalized by the
friction time for the single-phase flow, <(a);0)2>. The vorticities in the bubbly and droplet
flows have high values compared with the single-phase flow, indicating that the generation
of the streamwise vortices is enhanced by the injection of the bubbles or droplets. There are
peaks at y/6=0.07 and 1.93 near the walls in the profile of the bubbly flow. The
corresponding peaks for the droplet flow are more distantly positioned from the walls, and
the peaks in the single-phase flow are further away from the walls. In general, these peaks
approach the walls as the friction Reynolds number is increased. We have conducted a
simulation of the single-phase turbulent flow at a higher Re, (=160), which is comparable
with that of the turbulent bubbly flow, to find that the peaks in the vorticity profile are
located at /6 =0.19 and 1.81. This indicates that the bubbles (or droplets) rising along the
walls enhance the generation of quasi-streamwise vortices in the regions very close to the
walls. This is verified by the visualization of the vortical structures around the bubbles (see
Figs. 3).

v/ ’/
A ba
W'’

Fig. 6. A bubble and vortices. Light blue represents a wall.
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Fig. 7. The mean velocity profile for (a) bubbly flow and (b) droplet flow.

In the profile for the bubbly flow, there are small bumps at /5~ 0.3 and 1.7 in addition to
the two peaks near the walls. As is shown in Fig. 6, these peaks and bumps correspond to
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the trailing vortices around the bubbles. Relatively small trailing vortices are seen on the
wall side of the bubble (e.g. a vortex pair marked by A), while relatively large vortices are
also seen on the side of the channel center (e.g. vortices marked by B).

In Fig. 5(b), the profiles of the streamwise vorticity squared which is normalized by the
friction time for each flow, ((w})?), are shown. The vortices is relatively weak in the central

region of the channel in the bubbly flow.

3.1.3 Mean velocity profiles

Fig. 7(a) shows the mean velocity profiles for the bubbly flow. The black line represents the
liquid velocity in the single-phase flow, and the red line and blue circles represent the liquid
and gas velocities in the bubbly flow, respectively. Note that the gas velocity is not the rise
velocity of the bubble centroids, but just the velocity of the gas inside the bubbles. Note also
that the bubble diameter is 0.46. Since the wall shear stress is increased with the flow rate
fixed, the mean velocity normalized by the friction velocity is reduced compared with that
for the single-phase flow.

The gas velocity is higher than the liquid velocity near the walls, while it is lower in the
regions around y/8=0.25 and 1.75. The bubbles are exposed to high shear near the walls.

The balance between this shear stress and the interfacial surface tension leads to the higher
gas velocity near the walls and the lower gas velocity on the central side of the channel. In
fact, the streamwise velocity is homogenized by the circulating flow inside the bubble.

Fig. 7(b) shows the mean velocity profiles for the droplet flow. The velocity for the
dispersed-phase fluid is remarkably lower than that for the continuous-phase fluid in the
regions around y/6=0.25 and 1.75, indicating that the droplets are moving more slowly

than the surrounding fluid.
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Fig. 8. The rms velocity fluctuation profiles.
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3.1.4 Turbulence intensities

Figs. 8 show the profiles of velocity fluctuations of the liquid (continuous-phase fluid) for
the single-phase, bubbly and droplet flows. In the case of the droplet flow, the streamwise
component of the turbulence intensities decreases near the walls due to the droplets. The
wall-normal and spanwise components, on the other hand, increase due to the presence of
the droplets in the near-wall regions. The fluid motions normal to the interfaces of droplets
are directly suppressed or induced by the presence of droplets. The droplets, on the other
hand, indirectly affect the fluid motions. The turbulence is augmented by the droplets, and
the redistribution mechanism of Reynolds stresses is enhanced. This may be one of the
reasons for the decrease in the streamwise component and the increase in the wall-normal
and spanwise components near the walls.

The profiles of turbulence intensities in the bubbly flow resemble those in the droplet flow
when they all are normalized by the friction velocity of the single-phase flow (figures not
shown). When normalized by each value of the friction velocity, all components are
considerably low in the turbulent bubbly flow compared with those in the droplet flow as is
shown in Figs. 8. This is because the increase in the wall shear stress (and the friction
velocity) is brought about by the factors other than turbulence augmentation, as is discussed
in 3.1.5.

3.1.5 Shear-stress profiles

The wall-friction drag is increased due to the injection of the bubbles (Note that the volume
flow rate is kept constant in the computation). Now, we examine the mechanism for the
increase of the drag by considering the balance of forces in the channel. Taking the average
of Eq.(2) over time and the x and z directions and integrating the averaged equation with
respect to iy, we obtain the relation

—puv () + 7+ [ fox )y’ =3[ (0= () (y')dy'=rw(1—%]- (24)

Here, 7 =udu/dy denotes the viscous shear stress and 7;,, = 7(0) = 7(25) . The first, second,
third, and fourth terms on the right-hand side of Eq.(24) represent the Reynolds shear stress,
the viscous shear stress, the surface-tension term, and the buoyancy term, respectively.

[am—

" — Rg:yn(l)lds stress] 1 —— Reynolds stress]
9 — Viscous stress 3 —— Viscous stress
=) —— Surface tension | 5 — Surface tension

e —— Buoyancy S —— Buoyancy I

S e N Sum ST VO W E Sum
50 20
7 7

= =
P E
7 wn | (b

-1 ) . ) -1t ) 1
0 1 2 0 1 2
v/6 /o

Fig. 9. Budget for shear stress.
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The profiles of these four terms are drawn in Fig. 9. They are normalized by the wall shear
stress. The sum of the four terms and the straight line of (1-y/8) are also plotted in the

figure. They agree well with each other, which indicates that the overall balance of forces is
satisfied. The viscous shear stress is dominant in the near-wall regions as in the case of
single-phase flows. The surface-tension term has large values in the regions of high void
fractions (see Fig. 4). The bubbles are deformed by the mean shear in the near-wall regions
and a restoring force due to the interfacial tension is acting to the liquid fluid. Since this
term has large values near the walls, it makes a major contribution to the increase in the
friction drag. The buoyancy term has relatively large values in the core region of the
channel, which reduces the relative magnitude of the Reynolds shear stress there.

For the droplet flow, the buoyancy term is obviously zero. The surface-tension term has
relatively large values near the walls since some droplets are located there. Its magnitude is
smaller than that in the bubbly flow, however. Instead, the relative magnitude of the
Reynolds shear stress is large in the droplet flow.
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Fig. 10. Profiles of Reynolds shear stress normalized by (a) 7}, and (b) 7}y .

Figs. 10 show the profiles of the Reynolds shear stress. They are normalized by the wall
shear stress, 7y, for the single-phase flow in Fig. 10(a). It is clearly seen that the magnitude
of Reynolds shear stress is increased in the near-wall regions due to the presence of the
bubbles (or droplets). This is because the momentum exchange is enhanced by the vortices
generated around the bubbles (or droplets) near the walls. This increase of the Reynolds
shear stress near the walls contributes to the increase in the wall friction. When normalized
by 7, the amplitude of the Reynolds stress is substantially reduced in the bubbly flow
except in the close vicinity of the walls. This indicates that the relative role of the turbulence
in the shear stress becomes diminished in the bubbly flow.

3.2 Heat transfer characteristics of turbulent bubbly flow

3.2.1 Friction temperature and Nusselt number

The friction temperature is also altered by the injection of the bubbles or droplets. The
relative magnitude of the friction temperature is shown in Table 9. The time-averaged
values of the Nusselt number in the single-phase flow are 15.8 and 20.6 for Pr.=1 and
Pr. =2, respectively (see Table 10). In the bubbly flow, the time-averaged Nusselt number
for Pr.=1 (Case B2) and Pr, =2 (Case B1) are 19.5 and 27.3, which are 1.23 and 1.33 times



Numerical Study on Flow Structures and
Heat Transfer Characteristics of Turbulent Bubbly Upflow in a Vertical Channel 135

higher than the corresponding values in the single-phase flow, respectively. In the droplet
flow, the Nusselt numbers for Pr. =1 (Case D2) and Pr. =2 (Case D1) are respectively 19.8
and 27.1, which are very close to the corresponding ones in the bubbly flow in spite of the
difference in the wall shear stress. By comparing Case Bl and Case B3, it is found that the
reduction in the Nusselt number due to the insulating effect of the bubbles is very small. By
comparing Case Bl and Case B4, we notice that the low heat capacity of the gas inside the
bubbles leads to some amount of reduction in the Nusselt number.

Case B1, B2, B3 B4 D1, D2
0./0,, 0.76 (0.76) 0.78(0.79) 0.85

Table 9. The values of ©,/0 .

Single Phase
Case Prep Pr=1 B1 B2 B3 B4 D1 D2
27.3 19.5 27.1 29.5
Nu 20.6 158 | ore | o) | @ray | pom | PN | 198

Table 10. Time-averaged Nusselt numbers. The values in the parentheses represent those for
the bubbly flow with the lower grid resolution.

3.2.2 Mean temperature profiles

The profiles of the mean temperature variance, ®" —@}, , are drawn in Figs. 11. The
temperature variance is decreased in the whole region of the channel for the droplet flow. In
the case of the bubbly flow, the temperature difference is decreased except in the core region
of the channel. This increase in the core region indicates that the enhancement of fluid
mixing due to the bubbles is rather confined to the near wall regions. The difference
between the mean fluid temperature and the wall temperature is smaller in the multiphase
flows than in the single-phase flow, which means that the increase of the Nusselt number
exceeds that of the friction Reynolds number (see Eq.(17)).
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Fig. 11. The mean temperature profiles for the single-phase flow, Case B1 and Case D1.
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3.2.3 Heat flux profiles

Now, we examine the mechanism for the enhancement of heat transfer by considering the
energy balance in the channel. The averaging of the energy equation, Eq.(8), over time and
the x and z directions, and the integration of the averaged equation with respect to y yield

iy =Gy pCat 1)y’ =k )~ pC10Y (). (25)

The left-hand side of Eq.(25) represents the total heat flux in the wall-normal direction, and
the first and the second terms on the right-hand side represent the molecular heat flux and
the turbulent heat flux, respectively. In the figures below, each term is normalized by the
wall heat flux of each case.
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Fig. 12. Heat flux profiles for (a) Case B1 and (b) Case D1.
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Fig. 13. The profiles of (a) the left-hand side of Eq.(25), (b) the molecular heat flux and (c)
turbulent heat flux.
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The profiles of these three terms are drawn in Figs. 12 for Case Bl and Case D1. The sum of
the molecular and turbulent fluxes is also plotted in the figures. In both cases, the sum
agrees well with the left-hand side of Eq.(25), which indicates that the overall balance of heat
transfer is satisfied.

Fig. 13(a) shows the profiles of the left-hand side of Eq.(25) for the single-phase flow, Case
B1 and Case B2. Clear differences are not seen among three cases, indicating that the change
in the profile of heat-capacity flow rate due to the bubbles or droplets has an insignificant
effect on the enhancement of heat transfer. The profiles of the molecular heat flux are shown
in Fig.13(b). The molecular heat flux in the bubbly (or droplet) flow is reduced near the
walls compared with the case of the single-phase flow. This indicates that the effective heat
conductivity is increased due to the bubbles (or droplets).

Fig. 13(c) shows the profiles of turbulent heat flux. The turbulent heat flux is increased by
the effects of bubbles (or droplets) in the regions near the walls. As is shown below, this is
caused by the vortices whose generation is activated by the bubbles (or droplets). This
increase in the turbulent heat flux in the near-wall regions is responsible for the increase in
the effective heat conductivity of the fluid near the wall, which enhances the heat transfer. In
summary, the enhancement of heat transfer in the bubbly or droplet flow is caused by the
increase of the turbulent heat flux near the walls.

3.2.4 Effects of thermal properties of gas inside bubbles

Figs. 14 show the distribution of the temperature variance, @;, —®*, in the x-y plane for the
three cases (Case B1, B3, B4) with different thermal properties for the gas inside the bubbles.
Red and blue represent the regions of 0, -0">0 and 0, -0 <-30, respectively.
Contour lines represent the cross-sections of the bubbles. The temperature is high near the
walls and low in the center of the channel. The flow is going upward. It is found in Figs. 14
that the temperature field is almost uniform inside the droplet. This is due to the circulating
flow inside the bubble (figures not shown). The change of the temperature distribution is
small if the thermal conductivity of the gas is reduced. This is because the effect of
convection dominates that of conduction inside the bubbles.

Fig. 14. Temperature distribution in an x-y plane for the bubbly flow. (a) Case B1, (b) Case
B3, (c) Case B4.
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3.2.5 Heat transfer enhancement and vortices

In Figs. 15(a) and 15(b) the instantaneous temperature field, @;, — ®@*, and the cross-sections
of vortices are shown in a horizontal (y-z) plane for the bubbly flow (Case B1) and the
droplet flow (Case D1). Those for the single-phase flow are also drawn in Fig. 15(c) for
comparison. Notice that the temperature field is normalized by the friction temperature of
each case. Red and blue represent the regions of @; -©*>0 and @; -0 <-30,
respectively. The cross-sections of vortices are represented by the contour lines of the second
invariant of velocity gradient tensor of Q" =0.0125.

y y y
(a) Bubbly flow (b) Droplet flow (c) Single-phase flow

Fig. 15. Temperature distribution in y-z planes for (a) the bubbly flow (Case B1), (b) the
droplet flow (Case D1) and (c) single-phase flow.

In the single-phase turbulent flow, the vortices are located only in the low-temperature
regions away from the walls. In the bubbly and droplet turbulent flows, on the other hand,
they are also located in the near-wall regions where the temperature gradient is relatively
high. It is obvious that the vortices near the walls play a major role in the heat-transfer
enhancement.

It is interesting to know how the heat-transfer enhancement depends on the continuous-
phase Prandtl number. As is shown in Table 11, the heat-transfer enhancement is more
noticeable at higher Prandtl numbers. Since the thermal boundary layer is thinner at a
higher Prandtl number, the vortices near the walls, which are generated by the bubbles or
droplets, more effectively enhance the heat transfer. The ratio Nu(Pr=2)/Nu(Pr=1) is

weakly dependent on the friction Reynolds number in single-phase turbulent flows. We
performed a simulation for the single-phase turbulence at Re, ~ 160 and obtained the value

of 1.33, which is considerably lower than 1.40 in the bubbly flow at Re, =160 .

Case Single Phase | Bubble | Droplet
Nu(Pr=2) 1.31 1.40 137
Nu(Pr=1) ’ ’ ’

Table 11. The ratio of the Nusselt number at Pr, =2 to that at Pr, =1. The ratio of the
Nusselt number in Case B1 to that in Case B2 is shown for the bubbly flow.

3.3 Performance of heat transfer enhancement
As was shown above, the Nusselt number is increased by the injection of the bubbles or
droplets in the present simulations. This heat transfer enhancement is accompanied by the
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increase of the wall-friction, however. Reynolds analogy provides a useful concept for the
evaluating the performance of heat transfer enhancement. Colburn (1933) stated that
Reynolds analogy is described by the relation

StPr=j=c; /2, (26)

where

St= w . U 7)
Pe CPc um (®m - ®W) Rem Prc

is the Stanton number, j denotes the j-factor, and

w
cp= 28)
f (
lpu,

is the fricition coefficient. Eq.(26) holds for laminar and turbulent flow over flat plates and
turbulent flow in smooth ducts. The equation 2j/c, =0.25NuPr; 1/3Re,,Re;> =1 gives a

relation between friction due to surface shear and heat transfer.

As is shown in Table 12, the injection of the bubbles or droplets leads to the reduction of
2j/cy . The forces resulting from the interfacial surface tension (and the buoyancy)
significantly contribute to the increase of the wall shear stress in addition to the convection
in turbulence. Heat transfer enhancement, on the other hand, is mainly caused by the
increase in turbulent heat flux. Since the effects of the surface tension are more significant in
the bubbly flow, the reduction is more noticeable in the bubbly flow than in the droplet
flow.

The value of 2j/c; is larger for higher Prandtl numbers for all cases. The reduction of
2j/cy due to the injection of the bubbles or droplets is less significant for higher Prandtl
numbers where the convection term plays more important roles.

The above results indicate that the performance of heat transfer is not so good in the bubbly
and droplet turbulent flows. In the case of bubbly flows, however, the buoyancy force
exerted on bubbles, gApa, may be used as a driving force for the upflow through the
channel, where « is the mean void fraction. When all of this buoyancy force can be used to
reduce the extra driving force, the extra wall shear stress, which balances the extra driving
force, is given by 7'y, =7y, —(gApa)h =1, (1 - / Bu) . The values in the rightmost column
of Table 12 are obtained by replacing 7, in Eq.(28) by ', . These values exceed 1,
suggesting that the performance of heat transfer enhancement may be improved in the
bubbly flow.

Bubble Droplet Single-phase Bubble
Pr,=1 0.69 0.84 0.92 1.38
Pr. =2 0.77 0.92 0.96 1.54

Table 12. The value of 2j/c, .The rightmost column corresponds to the case in which the

buoyant effect of bubbles is considered.
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3.4 Future research

We still have many issues to resolve in order to clarify the heat transfer characteristics of
turbulent bubby upflows. Firstly, the size of the computational domain is possibly too small
to obtain the correct statistics of the turbulent bubbly flow since we utilized a minimal
channel. In addition, statistical errors may be large since the number of bubbles is small and
the computational time is relatively short to obtain the turbulence statistics. Larger and
longer simulations are required to resolve these problems. Secondly, we set the density ratio
at 0.1 and the viscosity ratio at 1.0, which are much higher than the corresponding values in
an air-water system. The bubble motions and the generation of vortices due to the bubbles
should be examined by changing the values of these two ratios. The continuous-phase
Prandtl number of 2.0 employed in the present study is low compared with that of about 7
at room temperature. Simulations at higher Prandtl numbers are desirable. Thirdly, only
two flow patterns (the bubbly and the droplet flows) have been simulated in the present
study. As was shown in Lu & Tryggvason (2008), the bubble distribution consists of a core
where the flow is essentially homogeneous, and a wall layer with a larger number of
bubbles sliding along the wall in the case where the buoyancy effect is dominant. This
interesting situation should be examined in the future study. The heat transfer
characteristics of bubbly drag-reducing flows is also an interesting topic to explore.

4. Conclusion

Direct numerical simulations have been conducted for turbulent bubbly upflow between

two parallel heating walls at a constant volume flow rate in order to clarify its heat transfer

characteristics. For comparison, simulations for neutrally buoyant droplets have also been
performed. We have obtained the following results.

e The bubbles accumulate in the vicinity of the wall and slide along the wall in the
turbulent channel upflow.

e The droplets are distributed rather uniformly throughout the channel though some
tendency of accumulation in the vicinity of the walls is observed.

e  The turbulence production is enhanced by the bubbles or the droplets in the near-wall
regions.

e  The wall friction is increased by the injection of bubbles. This is mainly caused by the
interfacial surface tension resulting from the deformation of the bubbles due to high
shear near the walls.

e The heat transfer is enhanced by the injection of bubbles (or droplets). This is because
the turbulent heat flux is augmented by the generation of the vortices due to the
bubbles (or droplets).

e  The reduction in the Nusselt number due to the insulating effect of the bubbles is very
small, while the low heat capacity of the gas inside the bubbles causes some amount of
reduction.

The heat-transfer enhancement is more noticeable at higher Prandtl numbers.

e The performance of heat transfer enhancement is not good in the bubbly and droplet
turbulent flows. However, the performance is improved in the bubbly flow if the
buoyancy force exerted on bubbles is available as a driving force of the upflow.
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1. Introduction

Fluidized beds are the units designed to provide fluid-solid contacting by the fluid flow
through a bed of particles (Andrews and Arthur 2007). A number of thermal processes in
technology take advantage of the importance of gas-solid interaction in fluidized beds to
carry out gas-solid reactions, heterogeneous catalysis and particle drying. The gas-solid
fluidization process in circulating fluidized beds is widely applied in many industrial
branches. Characterization of the gas-solid particle flow in a circulating fluidized bed (CFB)
riser is important for the process optimization. The particle size distribution has significant
influence on the dynamics of gas-solid flow (He et al., 2008) along with another important
property of the giving system, such as difference in the physical densities of the used
materials. The gas-fluidized beds consist of fine granular materials that are subject to the gas
flow from below giving the transport velocity that is large enough to overcome the gravity
by the viscous drag force and thus the particles can suspend and be fluidized. When in the
fluidized state, the moving particles work effectively as a mixer resulting in a uniform
temperature distribution and high mass transfer rate, which are beneficial for the efficiency
of many physical and chemical processes (Wang et al., 2005). For this reason the gas-
fluidized beds are widely applied in different industries: thermal, energy, chemical,
petrochemical, metallurgical, and environmental industries in large-scale operations
involving adhesion optimized coating, granulation, drying, and synthesis of fuels and base
chemicals (Kunii & Levenspiel, 1991). In general, the lack of understanding of fundamentals
of the dense gas-particle flows has led to severe difficulties in design and scale-up of these
industrially important gas-solid contactors (van Swaaij, 1985). In most cases, the design and
scale-up of fluidized bed reactors is a fully empirical process based on preliminary tests on
pilot-scale model reactors, which is a very time consuming and thus expensive activity.
Clearly, computer simulations can be a very useful tool to aid this design and scale-up
process.

In the CFB furnaces the ash solids and inert materials like sand particles are mainly used as
a solid heat carrier - separated in a hot cyclone and cooled after that in a heat exchanger
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while the ash particles come back into the furnace. The temperature level in the furnace can
be held in the given range by circulating the ash/sand masses. While the heat capacity of
ash is quite low, the circulating ash mass must be huge. One way of optimization is to keep
up higher heat capacity by adding inertial sand particles. The high ash concentration in
furnace gases can be attained with i) high velocity of gas in bed when the fuel particles
carried out of bed are burned and their ash fills the whole volume of furnace and ii) ash
circulation. The CFB combustion technology enables to bind the sulphur components with
the carbonate components added to the fuel or existing within the mineral part of the fuel. A
disadvantage of CFB is that some fuel ash particles become too fine during the circulation
and therefore the size of ash particles contained in the fuel gas exiting the hot cyclone is too
small. As a result of disintegration, the mass of fine ash particles, which are not separated
from flue gases or captured in the connective flue ducts and multicyclone increases. The
high concentration of particles in the fire gases of CFB furnace chamber contributes to the
formation of particle clusters with the solid phase concentration within 0.1 - 0.2 m3/m3. At
the exit of CFB boiler furnace the density of solid phase is within 5 - 20 kg/m3.

The given paper is an advanced research of two previous references: “Numerical simulation
of uprising gas-solid particle flow in circulating fluidized bed” (Kartushinsky et al., 2009)
and “Numerical simulation of uprising turbulent flow by 2D RANS for fluidized bed
conditions” (Krupenski et al., 2010) where the mathematical modelling of CFB has been
performed. The first one is related to the numerical simulations of CFB where the two-phase
turbulent boundary layer approach (TBL) was included. The latter concerns modelling of
CFB processes by the RANS approach, which has been developed for both, the gaseous and
solid phases, implementing the Euler/Euler approximations or a two-fluid model. Both
papers have their advantages and disadvantages. For instance, in the TBL approach the
diffusive source terms were retained only in one direction, namely, in the transverse
direction, and the magnitude of average transverse velocity components in the gas- and
dispersed phases were much less than that of longitudinal components of the corresponding
velocities in the gas- and dispersed phases. Such an approach is fully valid and used in the
pipe channel flows as well as in the turbulent round jets and flows past the rigid shapes
(Hussainov et al., 1995, 1996, Frishman et al., 1997). Nevertheless, a more rigorous and
accurate solution was obtained with the help of RANS approach where there are no artificial
predictions attached to the TBL approach. However, in both papers only one component of
solid admixture, namely, the ash particles are used to simulate the motion of particulate
solid phase as a whole.

The current mathematical performance assesses the effect of the presence of two coexisting
solid substances, such as ash (light) and sand (heavy) particles with the particle size
distribution for each component of solids. This system represents one step further for the
mathematical approach to capture real physical processes in CFB. Besides, by making
calculations in the real CFB conditions (high temperature of the process) we take into
account the amount of heat that must be separated from the combustor by the sensible heat
of ash and solid sand particles. The approach enables to optimize particle mass
concentration of ash and sand solid particles in fire gases.

The problem is solved by using elaborated mathematical modelling with the help of 2D
RANS approach that applies to two coexisting phases. The numerical simulations are
performed in the vertical freeboard CFB flow conditions when the temperature of carrier
gas-phase fluid is 1123K. Therefore the corresponding magnitudes of parameters of the
gaseous phase such as kinematic viscosity coefficient and density of the gaseous phase must
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be increased by the factor ten and decrease by factor three, respectively, versus their
magnitudes obtained for the normal flow conditions at the temperature 293K.
The following practical initial data were used in calculations:

Generic name Dimension | Minimal | Average | Maximal
Diameter m 0.0305 | 0.0305 | 0.0305
Pipe data -
Height m 1525 | 1.525 1.525
Ash concentration | kg/nm3 10 20 20
Ash density kg/m3 2000 2000 2000
Ash particle size m 0.005 | 0.0075 0.01
Sand density kg/m?3 2600 2600 2600
Sand particle size m 0.005 | 0.0075 0.01

Table 1. The initial data for calculations.

For these media we have chosen the initial data very close to the medium in the Estonian
oil-shale CFB furnace. The problems of two-phase flows in the CFB risers have been
analyzed in certain publications (Hussain et al., 2005, Moscow Energija, 1973), but these
studies do not consider dependence of the amount of sensible heat carried by solid particles
on the mass flow loading magnitude. The numerical parametric study deals with the
influence of the parameters of various riser exits on the hydrodynamics of gas-solid two-
phase flow in the CFB riser (Hussain et al., 2005, Moscow Energija, 1973).

The freeboard CFB used in the given research represents a cylindrical symmetric pipe flow
domain occupied by the giving mixture of gas and two types of solid particles. Since the
two-fluid model or Euler/Euler approach is applied for the description of the behaviour of
solid particles as continuous co-existing phases, the numerical performance is carried out
with the finite (control) volume method (Peri¢ & Scheuerer, 1989 and Fertziger & Peri¢,
1996) written in numerical codes. Another mathematical modelling method, which also
operates with the Euler/Euler (or coexisting) approximation deals with the high density or
packed particulate flows and solution is obtained with applying the theory of granular
flows, for example, that by book of Multiphase Flow and Fluidization: Continuum and Kinetic
Theory Descriptions (Gidaspov, 1994). In such particulate flows, the particle-turbulence
interaction phenomenon is less significant in comparison with the particle-particle collision
phenomenon. On the contrary to the Euler/Euler approach, another well-known
approximation, which is frequently applied for modelling, the dispersed phase is the
Lagrangian Particle Tracking method. The Lagrangian method deals usually with huge
numbers of tracking particles (up to several millions of tracking particles depending on the
mass flow loading) to obtain a converged solution and also to take into account the particles
feedback in the primary fluid (gas-phase). One mathematical technique that can be used for
the calculation of flow parameters, including the coupling effect, is given by the particle-cell
source method (Crowe et al., 1977). Helland et al., (2000) using the Lagrangian Particle-
Tracking approach to calculate the two-dimensional gas-solid particles flow in a CFB riser
with the 3% total volume concentration of solids. To take into account the effect of the inter-
particle collisions within the Lagrangian approach, (Sommerfeld, 2001) developed a
stochastic inter-particle collision model with the introduction of a fictitious particle with
which the traced particles might collide.
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To sum up with introduction one can underline an importance of sought problem, that is the
key study of given process is taken place in freeboard of furnace of CFB steam-generator
and which is under numerical investigation.

2. Theoretical terms of the model

2.1 Governing equations for the two dimensional RANS model

In the area of multiphase flows there has been developed a lot of models for particulate
flows in several papers e.g.(Pfeffer et al., 1966, Michaelides, 1984). A “two-fluid model” is
being used in the modelling of dispersed two-phase systems where the gas and particles are
considered as two coexisting phases that reach the entire flow domain. To describe the flow
of the particulate phase, one of the possibilities is using the Reynolds-Averaged Navier-
Stokes (RANS) method. The general equations of this method were examined by plenty of
experiments, which showed that with using this method it is possible to discover, for
example, the boundary conditions using the wall-functions approach and it is quite easy to
implement it numerically. In this work the RANS method is used for both coexisting phases,
namely the gas- and solid phases with the closure equations. Two basic predictions were
used for closure of the governing equations of gaseous and dispersed phases:

i) the four-way coupling model (Crowe, 2000) by that captures one capture the particle-
turbulence interaction phenomena and ii) the inter-particle collision closure model
(Kartushinsky & Michaelides 2004) to assess an the particles interaction. The both models
are used for receiving an output of necessary data which are the axial and radial velocities,
turbulent energy and the particle mass concentration. The information on these parameters
will be much useful for evaluation of the relevant processes occurred in particulate flows
like CFB processes.

This model is based on the complete averaged Navier-Stokes equations applied for the
axisymmetrical upward gas-solid particle turbulent flow in the freeboard CFB processes.
The governing equations present the carrier fluid (gas-phase) and solid (polydispersed)
phase which is considered a co-existing flow and consists of a continuity equation for the
gas-phase and mass conservation equation in the dispersed phase together with the
momentum equations for both phases in the longitudinal and radial directions. In addition,
the moment of momentum equation is included for the solid phase because of Magnus lift
force and plausible particle rotation stemmed from the wall interaction. The solid phase is
considered a polydispersed phase, which consists of two particle fractions - light (ash)
particles and heavy (sand) particles. The present governing equations along with the
corresponding boundary conditions are given by Kartushinsky and Michaelides (2004, 2006,
2009) and are the following;:

1. Continuity for the gaseous phase:

ou . o(rv)
ox  ror
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2. Linear momentum equation in the longitudinal direction for the gaseous phase:
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3. Linear momentum equation in the radial direction for the gaseous phase:
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4.  Turbulence kinetic energy equation for the gaseous phase:
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5. Mass conservation equation for the solid phase:
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6. Momentum equation in the longitudinal direction for the solid phase:
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7. Momentum equation in the radial/transverse direction for the solid phases:

0 o 2\
» (azvszusr) + Tar(raiv si) -




148 Computational Simulations and Applications

8. Angular momentum equation for the solid phases:
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Here p is the pressure, u, u,, v,, ®, are the longitudinal, radial, angular velocity

components of gas- and solid phases (subscript s), respectively, and o the particle mass
concentration. The subscript “i” corresponds to the number of particle fraction and varies in
the range (1<i<3), which composes the polydispersed phase. The particle void fraction is
linked with the particle mass concentration as a=Bp/p, (B is solids void fraction). The
closure equations of gas-phase are performed by using k—L, four-way coupling model of

Crowe (2000) where k is the turbulent energy of carrier fluid and Ly is the hybrid length
scale. This parameter is computed as a harmonic average of the integral turbulence length

scale of single phase pipe flow, L, (L, =ki/* /¢, ) and inter-particle spacing, %, defined as

A= 843/(pp / ap)fl . Thus, the hybrid length scale or scale of dissipation rate of turbulent

energy in particulate flows is determined as L, =2LyA /(Ly+4) [Crowe 2000]. The values,

p, and p are the densities of the particle materials and gas-phase, & is the particle size. The

coefficient of turbulent viscosity is calculated as v=+kL,, by the turbulent energy of
particulate flow and turbulence length scale related to the single phase flow. Thus, the
parameters of the single phase flow (subscript 0), the average velocity components,
turbulent energy, k, its dissipation rate, g,, together with Lo (while T, =k, / g, is integral
turbulence time scale) have to be calculated in advance (in preliminary calculations) for
completion modelling in the pipe gas-solid turbulent flow system. An advantage of the four-
way coupling model of (Crowe, 2000) (with the inclusion of particle collision) is that it
includes the turbulence enhancement by the presence of particles, expressed via the term
(47 +27)
~— (u, =u—u, and v, =v-1v, is the slip velocity between the gas- and solid phases

along the streamwise and radial directions) and turbulence attenuation via the increase of its
2

Ppd

18pv

is the particle response time for the Stokes regime (v is the kinematic viscosity coefficient)
and t'=1/Cp for the non-Stokes regime expressed via the particle Reynolds number,

Re, =8yJu? +v? /v and C}, =1+0.15Re>** . By determining of the coefficients of C,; and

F,; one can correct the values of the lift Magnus and Saffman forces and C,; for the

dissipation rate by particles, g, =k*? /L, (in the right-hand side terms of Eq. 4). ©=

particles rotation are taken from (Crowe et al., 1998) for relevant range of change of the

particle Reynolds number, Res. Q =rotV — o, is the angular velocity slip of particles while
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the differential mathematical operator “rot” over the gas velocity vector V is defined for the
. (7 ov  Ou [ [ ' ' ] G
2D motion, as rotV =7(———) The average values, a'u;, o'v., usz , ZJSZ2 , ULV, UL,
ox oOr ’

and v.w, are the particles stress tensors originated from their turbulent fluctuation along
with their inter-collisions calculated from (Kartushinsky & Michaelides, 2004). Due to the
particle turbulent diffusion and particle collision the diffusion coefficient has two
components: D, =D, ., +D,;. The first term in expression for the particle diffusion

coefficient is calculated as D, = %k(r + TO){l - exp[—TOH from the PDF model of
T

Zaichik & Alipchenkov (2005) and the second term is taken from the particle’s collision
model of Kartushinsky & Michaelides (2004).

3. Results and discussions

The numerical method: In the given RANS computations the control volume (cv) method was
used. The governing equations (1-9) were solved using a strong implicit procedure with the
lower and upper matrix decomposition and up-wind scheme for convective fluxes (Peri¢ &
Scheuerer, 1989 and Fertziger & Peri¢, 1996). For the considered computations, 145,000
uniformly distributed control volumes were utilized for running the numerical codes. The
wall functions were incorporated at a dimensionless distance from the wall as follows,

+= Ayv* _ Ay'C“\/E
Y A% A%
constant that equals to ¢, =0.09 and k is the turbulent energy, respectively.

=10, where Ayand c, are the control volume size and the empirical

All computations were extended from the pipe entrance to a short distance up to x/D=50 (D
is the pipe diameter) similar to the height of the freeboard of CFB. For the particulate phase,
when the size of particles is often larger than the size of the viscous boundary sub-layer, the
volume domain occupied by the dispersed phase has slightly shrunk, which gives always
positive values for the solids’ velocities in the wall vicinity. This method follows the
numerical approach by Hussainov et al., (1996) has been employed here.

All results are presented in the dimensionless way: the velocities of both phases are related
to the gas-phase velocity at the centre of the flow (r=0), the turbulent energy is normalized
to a square of the gas-phase velocity, and particle mass concentration is normalized to its
value at (r=0).

The numerical results. The effect of inter-particle collisions is very important for the
particulate flows when the ratio of t. /t1<1 (where 1, is the time of inter-particle collision

and t is the particle response time). In the considered freeboard CFB, for the particulate
flows with a high mass flow ratio about or above 10kg dust/kg air the given ratio of 7./t

is less unit resulted in accounting of the collision process in CFB by utilizing “collision
terms” in equations (5-8). These terms are responsible for inter-particle collisions. These are
terms for the production of longitudinal and radial components of linear velocity
correlations and deriving linear and angular velocity correlations of the solid phase, such as
u;z , ,012

i, vy, uyoy , v.oy . These velocity correlations are due to the particle collision

between various fractions and they are computed from the difference in average velocities
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of various sizes of particles and from that in particle material densities (light and heavy
particles). An analytical expression for given velocity correlations of the dispersed phase
along with the closure approach of the governing equations of polydispersed phase, Egs.
(5-8), are given in model of (Kartushinsky & Michaelides, 2004).

The results of numerical simulation are shown in the following Figures 1-7. The axial
velocity distribution of dispersed phase is calculated as an average velocity of the mixture
of ash particles of different sizes or as a mixture of ash and sand particles with applying the
/ Zoc,- where u

1

formulae, u, =Za,—u and o; are the axial linear velocity and particle

1
mass concentration of ash or ash and sand particles, respectively. The Fig.1 shows
longitudinal distribution of the gas- and solid phases for three examined cases: mixturel is
the ash (p, =2000kg/m3) and sand particles (p, =2600kg/m?) of the same size, 500pm with

si si/

the total mass flow loading of 10kg/kg equally distributed between the ash and sand
particle fractions; mixture?2 is the composition of ash particles of two sizes, 500 and 1000pm
and sand particles of 500pm with the total mass flow loading of 10kg/kg, which are equally
distributed between these three particle fractions, and finally, mixture3 consists of ash and
sand particles of the same size 500pm with the higher total mass flow ratio of 20kg/kg
where the mass fractions are equally distributed between the ash and sand particles. The
calculations were performed for the conditions of CFB, namely, when the density of the
gaseous carrier fluid was p=0.3kg/m3 and kinematic viscosity of the carrier fluid

v=15-10"* m2/s. This corresponds to the flow parameters of hot gases at the temperature
of T=1123K.

1
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Fig. 1. Axial velocity distribution of gas- and dispersed phases for their average axial
velocity by different flow conditions for mixtures 1, 2 and 3.

As one can notice, the gas velocity profile is similar to the typical turbulent velocity profile,
however in a dense flow with high mass loading, e.g., 20kg/kg loaded by coarse particles,
the velocity profile of the carrier gas-phase becomes flatter (diffusive line in Fig.1). It comes
from the effect of turbulence enhancement by the motions of coarse particles, which modify
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the velocity profile to its shape of “fully” turbulent regime. At the same time the average
magnitude of the longitudinal velocity component of solids slightly increases with the
growth of the mass flow ratio (cf. straight dashed and bold solid lines in Fig. 1). Such
tendency in the two-phase turbulent jet has been experimentally observed by Laats & Mulgi
(1979). Fig. 1 gives also the distribution of longitudinal velocity components of different
solid particles. As the modelling shows, the velocity distribution of solid phase is less
sensible to the variation of particle sizes than to the change of mass flow loading (cf.
longitudinal velocity profiles for mixturel and mixture3, straight lines in Fig. 1).

The following Figs. 2 and 3 show the detailed distribution of longitudinal velocity
components for each particle fraction of solids presented separately. The cases of mixturel
and mixture3 show similar particle sizes of 500um, but different material densities (light and
heavy particles) and also different mass flow ratios: 10 and 20kg/kg (Fig. 2). The other cases
are the mixturel and the mixture2 with the particle sizes and material densities distributions
obtaining for the same total mass flow loading 10kg/kg (Fig. 3). As one can notice, the ash
particles have higher velocity than heavy sand particles (cf. dashed and solid dashed lines,
Fig.2) that could be observed for both mass flow loadings: 10kg/kg (mixturel) and 20kg/kg
(mixture3). Mixture2 is a more complicated case of particle composition. Considering the
above, we can see that the larger ash particles have a lower velocity value than the smaller
ones (cf. light and dark diffused lines for 500 and 1000pm particles, Fig.3). However, at the
same time the heavier sand particles of 500um have larger velocity magnitude than the
lighter ash particles of 500 and 1000pm, which show smaller velocity magnitude (Fig.3). This
trend is probably caused by the higher rate of particle collision between the light ash
particles of different sizes than that between the light and heavy particles of the same size. It
is difficult to predict such a tendency, but, it can be observed in numerical simulations.
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Fig. 2. Axial velocity profiles of ash and sand particles for various flow conditions: mixturel:
ash and sand particles of 0.5mm for 10kg/kg and mixture3: ash and sand 0.5mm for
20kg/kg.
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Fig. 4. Radial velocity profiles of gas phase and two components of solids for various flow
conditions: mixturel and mixture3 for ash and sand solid phases with different mass
loadings, 10 and 20 kg/kg, respectively.

Fig. 4 shows the distribution of radial velocity components of gas- and dispersed phases.
The profiles of radial velocities of ash and sand particles have been plotted separately for
different mass loadings: 10 (mixturel) and 20kg/kg (mixture3). As one can notice, increase
of mass flow loading results in change of shape and magnitude of the radial gas velocity
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profile (cf. dashed and solid lines, Fig. 4). Different behaviour in the distribution of radial
velocity components of solid and gas-phase can also be observed. Namely, the profiles of
solid phase have concave shape while the profile of gas-phase is convex. This means that the
increase of mass flow loading results in the increase of radial velocity component of both
fractions whatever particles are considered - the ash or sand particles (cf. solid and diffused
lines for mixture3 versus the dashed bold and diffused bold lines for mixturel, Fig. 4). This
comes from the effect of attenuation of the gas-phase by a larger amount of solid particles in
the flow.

The effect of lift forces is given in Fig. 5 in terms of the distribution of angular velocity of
particles. Fig. 5 shows the distribution of angular velocity of ash and sand particles
separately and also their average angular velocity calculated analogously to the above-
mentioned calculation of average linear velocity of solids in the given form:
o, = Zaiwsi / ZOLZ. where o,; is the angular velocity of composed particle fractions. As the
figure shows, the angular velocity of particles is gradually increasing towards the wall and
light ash particles have higher rotation in the vicinity of the wall than heavy sand particles.
The increase of particle rotation is obviously stemmed from effect of diminishing of the
particles inertia. The particle rotation results indirectly from the intensification of the mixing
process, because of the growth of Magnus lift force that causes the particle migration across
the flow.
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0 0.25 0.5 0.75 1
Radial distance, r/R

Fig. 5. Angular velocity profiles of ash and sand particles and average profile of the mixture

of particles o, for the same flow conditions in Fig. 4 for mixtures 1 and 3.

Fig. 6 shows the distribution of particle mass concentration across the two regimes of the
flow, which depends on the mass flow ratio: mixturel with 10kg/kg and mixture3 with
20kg/kg. As the figure shows the lower mass flow ratio results in the slower decrease of
mass concentration towards the wall versus the increase of mass concentration of particles
for higher mass loading of the flow. As numerical results show, the profile of particle mass
concentration is close to the flat shape, which can be observed in the flow loaded by coarse
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particles. In fact, the numerically obtained profiles of particle mass concentration are highly
appreciated because of the efficient operation of CFB units. On the contrary, in the flow
domain the gradient profiles of mass concentration can cause retard of enhancement of the
combustion process. Thus, an additional sand mass fraction brought to the flow domain
may contribute to the improvement of the combustion process in CFB cycles.

1.01
1.005 /
c
R
© 1 4 i e T T
e e R,
(8]
S 0.995 |
; —————— mixturel:ash
§ 0.99 1 - - - mixturel:sand
g —— mixture3:ash
s 0.985 - —— mixture3:sand
g
0.98 +
0.975 T T ‘
0 0.25 0.5 0.75 1

Radial distance

Fig. 6. Distribution of particle mass concentration for ash and sand solid phases in different
flow conditions shown in previous Figs. 4 and 5: for mixtures 1 and 3.

Finally, the Fig. 7 shows distribution of turbulent the energy across the flow. All considered
results for given three different regimes: mixturel, mixture2 and mixture3 are matched
between each other and versus also turbulent energy of single phase flow. As a whole, the
trend shows that the particles in all the observed regimes generate the turbulence, which
stems from the vortex shedding phenomenon behind the particles which is input to the level
of turbulence generated by the flow itself. This effect of turbulence modulation, namely, the
turbulence enhancement due to the presence of coarse particles is explained and computed
using the four-way coupling model by Crowe (2000). This amount of an additional turbulent
energy is proportional to the square of velocity slip between the gaseous and the solid
phases following the model by Crowe (2000) and it is substantial because of large velocity
slip between the phases owing to high inertia of large particle size. Following to the model
of Crowe (2000), this generation term is balanced by the introduced dissipation rate of
turbulent energy and calculated via the hybrid turbulence length scale (last term in the
right-hand side of Eq. 5). The given four-way coupling model by Crowe (2000) is based on
the criteria of turbulence modulation by particles considering the ratio of particle size to the
integral turbulence length scale. In accordance with this criterion for the considered cases of
two-phase turbulent flow loaded by 500 and 1000um particles, this scale ratio is far above
0.1 and therefore the particles enhanced the turbulence of the carrier gas-phase flow. In
addition, the effect of increase of polydispersity grade, i.e. particle size variation from 500
up to 1000pm occurred for the mixture2 (only with ash particles) is less pronounced than
that with increase of mass flow ratio up to 20kg/kg occurred in the case of the mixture3 (cf.
bold dashed line in Fig. 7), on forming the shape and magnitude level of turbulent energy.
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Feeding of particles into the flow field may create some reason for additional turbulence
generation and it is much appreciated because the intensification of mixing process in CFB
can be substantially improved, and as a result, higher efficiency of the combustion process
in CFB units can be obtained.
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Fig. 7. Turbulent energy profiles of single and gas phases for mixtures 1, 2 and 3 with
different particle sizes of ash: 0.5 and 1 mm and sand 0.5 mm and for the mass loadings (10

and 20 kg/kg).

4. Comparison of the results

Comparing the results with our previous research (Kartushinsky et al., 2009 and Krupenski
et al., 2010) in which the theoretical initial data were used we can notice the following
perceptible fact:

Inclusion of second (heavier) particle fraction modifies the turbulence of carrier fluid
resulting in the intensification of mixing process in the freeboard area of CFB.

5. Conclusions

The numerical study of particulate turbulent flow modelled by 2D RANS (Euler/Euler)
approach showed importance of addition of second solid fraction, characterized by heavy
(sand) particles along with existence of first solid fraction of lighter (ash) particles in the
mixing process taken place in freeboard CFB process. The main contribution to the flow
formation stems from the inclusion of inter-particle collisions and four-way coupling
turbulence modulation due to the presence of polydispersed solid particles with various
physical properties. Other forces exerted on the motion of solids are: the gravitation, viscous
drag and lift forces. On the basis of the performed calculations one can conclude:

a. variation of solids material properties results in the enhancement of flow turbulence in

comparison with the turbulence level of the flow loaded by one particle fraction;
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b. increase of mass loading of the flow is more pronounced for turbulence enhancement
than the increase of particle size;

c. increase of mass flow ratio intensifies the mixing process resulting in uniform
distribution of mass concentration of solids;

The obtained results can be implemented for updating/refurbishing of the industrial scale

CFB risers using the real sizes distribution of solid particles of ash and sand for the

combustion of Estonian oil-shale particles.
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1. Introduction

The full Navier-Stokes equations are difficult or impossible to obtain an exact solution in
almost every real situation because of the analytic difficulties associated with the nonlinearity
due to convective acceleration. The existence of exact solutions are fundamental not only in
their own right as solutions of particular flows, but also are agreeable in accuracy checks for
numerical solutions.

In some simplified cases, such as two-dimensional stagnation point flows, by introducing
coordinate variable transformation, the number of independent variables is reduced by
one or more. The governing equations can be simplified to the non-linear ordinary
differential equations and are analytic solvable. The classic problems of two-dimensional
stagnation-point flows can be analyzed exactly by Hiemenz Hiemenz (1911), one of Prandtl’s
first students. These are exact solutions for flow directed perpendicular to an infinite flat
plate. Howarth Howarth (1951) and Davey Davey (1961) extended the two-dimensional and
axisymmetric flows to three dimensions, which is based on boundary layer approximation in
the direction normal to the plane.

The similarity solutions for the temperature field were studied by Eckert Eckert (1942). Case
corresponding a step change in wall temperature or in wall heat flux in laminar steady flows
at a stagnation point has been also investigated by several authors (see Chao et al. Chao
& Jeng (1965), Sano Sano (1981) and Gorla Gorla (1988)). Further, Lok et al. Lok et al.
(2006) investigated the mixed convection near non-orthogonal stagnation point flow on a
vertical plate with uniform surface heat flux, where the results published are very good with
present value of 6(0) for the constant wall temperature boundary condition. On the contrary,
reversed stagnation-point flow over an infinite flat wall does not have analytic solution in
two-dimensional steady state case.

The aim of this study is to investigate the unsteady viscous reversed non-isothermal
stagnation-point flow, which is started impulsively in motion with a constant velocity
away from near the stagnation point. A similarity solution of full Navier-Stokes equations
and energy equation are solved by applying numerical method. Studies of the reversed
stagnation-point flow have been considered during the last few years, as this flow can be
applied in different important applications that occur in oil recovery industry, as shown in

Fig. (1).
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Fig. 1. Oil recovery industry
2. Governing equation

2.1 Momentum equation

The viscous fluid flows in a rectangular Cartesian coordinates (x, y, z), Fig. 2, which illustrates
the motion of external flow directly moves perpendicular out of an infinite flat plane wall. The
origin is the so-called stagnation point and z is the normal to the plane.

y

u=20 O

Fig. 2. Cooridnate system of reversed stagnation-point flow

By conservation of mass principle with constant physical properties , the equation of
continuity is:

ou  dv

g 1

ox * ay @
We consider the two-dimensional reversed stagnation-point flow in unsteady state and the
flow is bounded by an infinite plane y = 0, the fluid remains at rest when time t < 0. Att =0,

it starts impulsively in motion which is determined by the stream function

P = —axy 2)

For a viscid fluid the stream function, since the flow motion is determined by only two factors,
the kinematic viscosity v and &, we consider the following modified stream function
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¥ = —VAvxf(y,7) (3a)
A
T= At (3c)

where 7 is the non-dimensional distance from wall and 7 is the non-dimensional time. Noting
that the stream function automatically satisfies equation of continuity 1 . The Navier-Stokes
equations White (2003) governing the unsteady flow with constant physical properties are

al+ual+val_ 1ap V(a27u+azl) (4a)
ot ox  dy o ox 9xz  9y? @

dv  dv  dv _ 1dp v v

where u and v are the velocity components along x and y axes, and p is the density.
From the definiton of stream function, we have
99
u:@:7Axf’7 (5a)
]
o= — Vavr (5b)

Substituting # and v into the governing equations results a simplified partial differential
equation

foe = () + ffan = fyy +1=0, (6)

with the boundary conditions
f0,7) = fy(0,7) = (7a)
fy(eo,7) = 1. (7b)

Equation (6) is the similarity equation of the full Navier-Stokes equations at two-dimension
reversed stagnation point. The coordinates x and y are vanished, leaving only a dimensionless
variable 7.

When the flow is in steady state such that f;; = 0, it can be proved that the differential
equation does not have solution under the boundary conditions Davey (1961). Thus we
concentrate on the transient behavior in other section.

2.2 Energy equation

In this section, we shall focus on the non-isothermal flow which is at a temperature T different
from that of the wall T;. By solving the energy equation, we are able to determine the
temperature distribution in the reversed stagnation-point flow.
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For constant-property fluid such as results, the transient energy equation Burmeister (1993) is
given as follow
oT 9T T *T | T
— Fu—+v— | =k| 5+ P
pcp(at+uax+vay> (ax2+ay2>“’ (8)

where k is the thermal conductivity and ¢, is the heat capacity.
Note that u and v are the velocity components. These give

u=—Axfy (9a)
v =VAvf (9b)

and ® is defined as

au\? a0\ ? u  9w\? 2 [ou  9v\?
‘I”Kax) Ha) | (Gw) s EGE) (10
and is called the viscous dissipation since it represents the irreversible conservation of
mechanical forms of energy to a thermal form.

To transform equation (8) into a nondimensional form, a dimensionless temperature 6 is
defined as

T—-Ty
0= —- . 11
To T, (11)
where T is the ambient temperature. Noting that both T, and Tw, are constant,
T(O/ t) = Tw, T(OO/ t) = Teo, (12)

the temperature distribution T can be considered as a function of y and ¢ only.
Under the assumption that the viscous dissipation is negligible compared to conduction at the
wall, the energy equation may be written as

_pcpv ., pepv

O — ——fOy = =0« (13)
subject to the boundary conditions
6(0,7) =0 (oo, 7) =1 (14)

Equation (13) is a second-order partial differential equation with variable coefficients f(#, T)
and the Prandtl number Pr = pc,v/k is assumed to be constant. Consider the fluid of which
Pr = 1, the thermal boundary layer and the velocity boundary layer collapse, and thus,
substituting 6 = f’, equation (6) and (13) represent the same equation.

3. Asymptotic solution

3.1 Velocity distribution

When 1 is relatively small, Proudman and Johnson Proudman & Johnson (1962) first
considered the early stages of the diffusion of the initial vortex sheet at y = 0. They
suggested that, when the flow is near the plane region, the viscous forces are dominant,
and the viscous term in the governing Navier-Stokes equations is important only near the
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boundary. On the contrary, the viscous forces were neglected away from the wall. The
convection terms dominate the motion of external flow in considering the inviscid equation
in the fluid. According to their solution, the general features of the predicted streamline are
sketched in Fig. (3).

We therefore consider the similarity of the inviscid equation

foe = (fg)* + ffyp +1=0. (15)
Proudman and Johnson obtained a similarity solution of (15) is in the form
f(n,T) =e"F(7) (16)

and the further integration provides an exact solution

Fiy) =7 2(1-e) 7)

where ¢ is a constant of integration; the improved numerical evaluations of Robins and
Howarth Robins & Howarth (1972) estimate the value of ¢ to be approximately 3.51. This
solution describes the flow in the outer region. When T — co and 7/¢" is relatively small, the
solution (17) yields

Fro—y=—ne "
and
f==n f=- (18)
Substituting in equation (6) becomes
"= () -1=0 (19)
with the boundary conditions
f(0)=f(0)=0 (20a)
f/(o0) = —1 (20b)

This is exactly the classic stagnation-point problem Hiemenz (1911)) by changing the sign in
f. It is a third-order nonlinear ordinary differential equation and does not have an analytic
solution, and thus it is necessary to solve it numerically and the result is show in Fig. 4 .

3.2 Temperature distribution
Wen T — oo, we have an exact solution of the momentum equation in outer region, and thus,
we still apply the same procedure to solve the temperature profiles in outer region. Consider
the following transformation:
0(1,7) = ©(7) (21)
where
T=1ne
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if we consider a finite value of 7, equation (13) becomes an ordinary differential equation

2T
o + 2P%(l —e )@ =0 (22)
subject to the boundary
©(0) =0, O(c0) =1 (23)
where
c=3.51.

The following pages (Figs. (5) to (6)) show the asymptotic solution of temperature
distributions with Pr in outer region.

4. Finite-difference formulations

4.1 Governing equations
According to the previous work, the governing equations in reversed stagnation-point flow
are

f”/T_(fW)z—’_ffl’]r]_f}yqr/"‘l:O. (6)
Oyy — Pr f0, = Pr o, (13)

The above equations (6) and (13) subject to the boundary conditions are are nonlinear
third-order partial differential equations. They do not admit similarity solution and numerical
or perturbation methods are needed to solve the equation.

We shall, however, use here a numerical method. It is an implicit finite-difference method with
second-order accuracy. The partial differential equations can be expressed as approximate
expressions, so that it is easy to program the solution of large numbers of coupled equation.

We start with rewriting the partial differential equations in the form:

for = fonn + (F)* =1+ ffyy (24a)
0, = %ew — f8, (24b)

and introducing the new dependent variables

h=1-f, (25a)
g=10 (25b)

The equations can be rewritten as
e = hyy +20 =W by (1= h) dy (262)

1
§r = prm =8y [(L—h)dy (26b)
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We now consider the net rectangle in the T — 5 plane shown in Fig. (7) and the net points
defined as below:

=0, =ity j=1200 0 =

=0, =1"l44AT, n=12,.]

Here n and j are just the sequence of numbers that indicate the coordinate location, not
tensor indices or exponents. The partial differential equations are easily discretized by central

r} r 3
P4 PQ
Mi+1 4 .
r}j i N i ________ AT}
Lo PS I P1
e |
I AT '
g : } } - T
() —~n—1 ) T71+1

Fig. 7. Net rectangle for finite-difference method

difference representations with second-order accuracy, for example the finite-difference forms
for any points are

i hit
1 1—
hy = oA (27)
and ! — 2R + !
hyy = -+~ L m; =1 (28)

When i = 0, since the value of i ; is not logical, the derivative is replaced by the forward
difference with second-order accuracy

_h?+2 + 4h;’+1 B 3h? (29)
2Any

hy =



Computation of Non-Isothermal Reversed Stagnation-Point Flow over a Flat Plate 169

The finite-difference form of the ODE is written for the midpoint (7", 17j), the discretized
equation takes the form.

h?+1 hn hn+1 2h;1+1 + hﬂ+1

i+1 i—1 n__ (13,12
AT a2 +2h — ()
Wl —hiqy it
- T/O (1—h)dy (30a)
g1n+1 gln gan:rll ZgnJrl +g;1:r11
AT Pr(Any)?
818 /fA’? B
v RO (30b)

This procedure yields the following linear tridiagonal system:

hl’l

—hd
Zh? _ (h?)z z+1 -1

Y (1- (31a)

0

—BHIE + (14 2B)h T — BRI = R+ AT

81— 81 ¢

Basivas Bygn Lo ac B8y 06
0

where g = At/ (An)?.

4.2 Initial flow
The initial condition is the solution of the following linear partial differential equations

he = hyy (32a)
1
8t = p.8m (32b)
an the required solutions are
h=1—erf (—77 ) (33a)
27
= 33b
ef(Z\/T/Pr) (33b)

where the error function erf(z) is defined as

erf(z) \F / exp(—¢2) dé (34)
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When T — 0, the boundary conditions are convenient to write in the form

h

o3
Il
oQ

o=
Il

o

-t (3t7m) )
Equations (31) are defined as being implicit, as more than one unknown appears in the left
hand side. They are unconditionally stable, however, set of linear algebraic equations is
required to be solved by the tridiagonal matrix algorithm (TDMA), also know as the Thomas
algorithm, which is a simplified form of Gaussian elimination that is applied to evaluate
tridiagonal systems of equations.

The procedure is straightforward, except for the algebra. The resulting algorithm of the
finite-difference method is written in MATLAB, a numerical computing environment allowing
matrix manipulations and plotting of functions and data.

5. Numerical result

The following figure (Figs. (8)) shows the velocity distribution f. From the solution 17, we
have

log(1— fy) = —cyy +1log2 (36)
and if the similarity solution holds, then the graph of log(1 — f;;) against e~ should provide
a straight line of gradient —c, except for small values of 77, In Figs. (8), the values of log(1 — f;)
are plotted against 7e~7~3? at different value of 7. The value of c is 3.51 which is consistent
with the previous discussion.
Next, we show the numerical solution of temperature distributions with Pr in Figs. (9)
through (10)) . It is noticed that the dimensionless wall temperature gradient ®'(0) raises
with increase of Prandtl number, but the thermal boundary layer thickness decrease with
increase of Prandtl number. The thermal boundary layer thickness is the distance from the
body at which the temperature is 99% of the temperature obtained from an inviscid solution.
The decrease of thickness can be explained by the definition of Prandtl number that Prandtl
number is inversely proportional to the molecular thermal diffusivity a. If the Prandtl number
is greater than 1, the thermal boundary layer is thinner than the velocity boundary layer. If
the Prandtl number is less than 1, which is the case for air at standard conditions, the thermal
boundary layer is thicker than the velocity boundary layer.
In comparison to the asymptotic solution, we note that increase in non-dimensional time
leads to an increase in temperature profiles in both cases. Near the wall region where 7 is
small, the dimensionless wall temperature gradient of the numerical solution is lower than
that of the asymptotic solution. It is because the asymptotic solution is only valid for the outer
region. At our level of discretization, however, we are only able to resolve in small time range.
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6. Conclusion

This study provides velocity and temperature distributions at different locations along
the wall of a reversed stagnation-point flow by solving the numerical solution of full
Navier-Stokes equations with finite difference method. Numerical findings show that velocity
profiles obtained from similarity solution and numerical simulation are in tremendously good
agreement and in region close to the stagnation point. Discrepancy of results in velocity
profiles increases in region which is away from the reversed stagnation-point flow.

With the establishment of this frame work, the more important practical properties in
engineering and technology application, like the velocity of wall is function of time, the
temperature of wall is function of time and distance from wall, can be investigated and they
would be the next phase of this study.
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1. Introduction

The problem of the environmental impact of energy conversion systems is particularly felt
in the automotive field as a consequence of the wide diffusion of internal combustion
engines within the transportation systems, and of the very high concentration of vehicles in
the urban areas. Several actions, therefore, are today being taken by car manufacturers and
researchers towards the development of more and more efficient propulsion systems,
characterised by lower and lower pollutants emissions. In fact, despite the recent efforts
aimed at developing alternative technologies, it is likely that the internal combustion engine
will remain dominant for the next 30 years and beyond. This implies that the study and the
optimisation of the thermo-fluid-dynamic processes characterising its operation will
undoubtedly continue to play a determining role in the forthcoming scenario.

The major difficulties today encountered in the experimental characterization of combustion
and pollutants formation in both spark ignition (SI) and compression ignition (CI) engines
rely in the low spatial and temporal resolution achievable from measurements, as well as in
the possible influence of instruments on the same phenomena to be investigated. The
diagnostics capability surely benefits of the development of non-intrusive optical
techniques, although constructive and economic problems still hinder their broad use. On
the other hand, the introduction of increasingly accurate physical and chemical models and
the simultaneous growth of the processors speed have led to a diffuse use of computational
fluid dynamics (CFD) techniques, especially in the phase of engine design. A wide variety of
geometrical configurations or sets of engine parameters, indeed, are today suitable of being
analysed into detail through models of various complexities at relatively low costs, or
optimised according to predefined objectives.

As regards SI engines, in particular, the most pursued solution for the improvement of fuel
economy relies on engine downsizing, coupled with turbo-charging and direct injection
(DI): the engine displacement is reduced, whereas an increase of the low end torque is
realised by air boosting, compression ratio rising and gasoline injection directly in the
combustion chamber. These measures allow overwhelming the main shortcoming of
engines mounting port fuel injection (PFI) systems, with mixture formation occurring within
the intake ducts, namely the significant engine pumping losses at part-load operation
(where the engine works during most of an urban driving cycle), caused by the throttle load



178 Computational Simulations and Applications

control. The more precise gasoline dosage determines mixture formation processes the more
effective for the development and stability of combustion. Knock arising benefits of the
charge cooling effect offered by directly injecting the fuel into the cylinder. The engine can
even be operated with overall lean mixtures through the so-called stratification of the
charge, namely by creating a zone with stoichiometric air-to-fuel ratio around the spark
plug and leaner conditions close to the cylinder walls. This reduces the wall heat losses, the
unburned hydrocarbons (HC) and the carbon monoxide (CO) formation, and, at the same
time, strongly increases the engine volumetric efficiency.

A lean engine operation, to the sake of truth, is generally feasible only at low loads and
speeds, while at the higher loads, and at all loads and high speeds, the engine better works
as homogeneous/stoichiometric. In fact, the in-cylinder turbulence intensity increases with
the engine speed, hindering stable stratifications to be achieved at the higher regimes; on the
other hand, increasing loads while attempting to maintain a stratified charge leads to
mixtures locally excessively rich, that may cause an undesired increase of soot formation.
The realization of these different mixture conditions, namely of what is commonly called
“mixed mode” direct injection boosting, encounters several difficulties in the practice. These
range between the need of having at disposal increasingly efficient after-treatment systems
for lean operation and the will to gain further insight into the in-cylinder mixture formation
and combustion processes [Kiisell et al., 1999; Celik and Ozdalyan, 2010; Alkidas, 2007]. At
present, technical solutions aimed at realising mixture conditions optimal for stable
combustion, with low emissions and gasoline consumption over the whole engine working
map, mainly rely on the employment of new generation high pressure GDI injectors
(especially in the multi-hole configuration), as well as on the possibility to resort to split
injections in the low speed regimes.

By controlling the spray orientation and fragmentation, a flexible charge stratification can be
achieved, that, case by case, as the engine load and speed are changed, is able to give rise to
an optimal combustion processes development.

Present work is focused on two activities performed by authors within the CFD approach to
the study of in-cylinder processes in SI engines: the development of a three-dimensional
(3D) numerical model for the GDI spray dynamics [Costa et al., 2010], whose prediction
capability is improved through a Simplex optimization algorithm, and the assessment of a
procedure for the fuel consumption reduction based on the optimal synchronization of
injection within the engine working cycle [Costa et al., 2011]. The work is organised as
following.

A certain insight into the behaviour of new generation GDI multi-hole injectors is first given,
by experimentally characterizing three different devices both at the mass flow rate test
bench and in an optically accessible vessel. Single and double injection strategies are
considered.

The experimental activity is finalised to the creation of a database to be used for the
assessment of a 3D numerical model for the GDI spray dynamics. The model is developed
within the AVL Fire™ code [www.avl.com] and exploits a log-normal distribution for the
initial droplets diameter, whose expected value and variance are properly defined.

Hints for a GDI engine design are then given. One of the three injector is considered as
mounted on a single-cylinder engine, four-valve, four-stroke, 638 cc displacement, suitable
for motorbike applications. A 3D model able to reproduce the in-cylinder energy conversion
process, namely the whole pressure cycle, is build within the same commercial software
environment. Two typical engine operating conditions are taken under examination, a high-
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load and a moderate-load. In this last case, a globally lean stratified operation is studied.
The influence of important parameters, as the injector orientation, the start of injection (SOI),
the time of spark ignition (SI) and the injection pressure on the mixture formation and
combustion processes are discussed.

Results of a study of split injection under lean-mixture, moderate-speed, moderate-load
working conditions are finally presented. Major aim is the application of an optimization
technique for the individuation of the mixture formation process realising a combustion the
most effective for the maximization of the engine work. The software modeFRONTIER™ is
chosen to automatically run the 3D numerical engine model. The Simplex algorithm is
adopted to draw the choice of the input parameters in the design of experiments (DOE)
space.

2. Experimental characterisation of the GDI spray dynamics from multi-hole
injectors

Either the desired charge stratification around the spark plug in lean-mixture operation, or
the greatest homogeneity under stoichiometric conditions, is achievable in GDI engines
through different modes of gasoline-air mixture formation. In the so-called wall-guided mode
the gasoline spray is directed towards the piston, which exhibits a properly shaped “nose”
deflecting the mixture cloud in the vicinity of the spark plug. In the air-guided mode the
mixture richer region is brought towards the ignition location by the tumble motion of the
air entering from the intake ducts. Finally, in the jet-guided or spray-guided mode typically the
spacing between the injector and the spark is smaller, with the fuel spray injected close to
the ignition location [Stan, 2000].

Several kinds of injectors for GDI applications are today available. The earliest solution to
reduce the rapidly changing fuel concentration gradients as the fuel passes the spark
location during the injection period, hence to increase the combustion robustness, relies on
the adoption of air-assisted injection systems, such as the one developed by Orbital Engine
[Cathcart and Railton, 2001]. This technology is today still applied, because it offers an
additional degree of freedom constituted by the direct injection of air, that allows a more
effective control of local oxygen concentration, temperature and charge motion through the
cycle [Shim et al., 2008]. Alternative solutions, better meeting the requirements for the
development of more efficient GDI engines, are the high pressure injectors: the swirl type
injector generates an hollow-cone fuel spray by providing a swirl rotational motion to the
fuel, that widely disperses and well-atomizes the spray at moderate injection pressures
[Brewster ef al., 2008]; the multi-hole configuration, on the other hand, exhibits flexible spray
patterns that reduce the fuel impingement on the cylinder walls and improve the spray
stability (cone shape) with respect to the existing backpressure.

Three commercial multi-hole injectors suitable to be mounted on high-performances SI
engines are tested within the present work. As mentioned in the Introduction, the major aim
is the assessment of a complete database for the development of a 3D numerical model for
the spray dynamics. Table 1 reports the holes number and diameter, as well as the exact
flow rates of the considered injectors. The axes of the single jets coming from the nozzles are
configured to depict different spray footprint structures. Two injectors are manufactured by
Bosch, type HDEV 5.1, differing for the holes number, six for Injector #1, seven for Injector
# 2, distributed regularly on a circumference to form an ellipsoidal-like hollow-cone
geometry. The third injector is a six-hole Continental device, with five holes distributed over
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a circumference and the sixth one in central position. Fig. 1 represents three sketches, each
drawing the position of the holes on the relevant injector and the footprint of the spray axes
on a plane placed at a distance of 30 mm from the holes themselves.

Injector Type holes Hole diameter | Static Flow at 10
number (mm) MPa (g/s)

Injector #1

BOSCH HDEV 5.1 6 0.193 13.7
Injector # 2

BOSCH HDEV 5.1 7 0.179 13.7
Injector # 3

CONTINENTAL 6 0.190 13.1

Table 1. Geometrical and flow rate characteristics of the three tested injectors.
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Fig. 1. Holes distribution and spray footprint on a plane placed at 30 mm from the injector
tip. Injector #1 (top left), Injector #2 (top right) and Injector #3 (bottom).

The maximum operating pressure for all the three injectors is forced up to 25 MPa for
Injector #1 and #2, up to 20 MPa for Injector #3. Commercial gasoline is used (p=740 kg/m3)
delivered by a hydro-pneumatic injection system without rotating organs. The system is
managed by a programmable electronic control unit (PECU) enabling to define the strategy
typology in terms of number of injection events, durations and dwell times.

Two types of analysis are conducted: instantaneous mass flow rates of gasoline are
measured by means of an AVL meter operating on the Bosch principle [Bosch, 1966;
Wallace, 2002] under both single and double injection strategies; image processing
techniques are applied to derive the single jet penetration length and cone angle over time in
the single injection case. The measured instantaneous mass flow rate profile is integrated
over the injection interval of time to gain the total injected mass, and to verify that the value
of this last quantity is in accordance with that measured by means of a precision balance.
The study of the fuel dispersion, instead, is realized in an optically-accessible high-pressure
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quiescent vessel containing air at atmospheric backpressure and ambient temperature. The
jets are enlightened by powerful flashes at different instants from SOI. Images are captured
through a high resolution CCD camera, 0.5 ps shutter time, 12 bit, at different times from
SOIL. The optical axis of the CCD is oriented either in a parallel or in an orthogonal way with
respect to the spray propagation. Alignments of the jet directions with respect to the camera
axis are actuated by a wet seal spherical holder enabling to tilt the injector in the angular
range +/- 15°. The tip penetration of the considered jet, as well as the cone angle, is collected
as a function of time. The images processing is based on background subtraction, filtering
and edges determination. All the measurements are made on five-image averaged pictures
for a statistical analysis of the cycle-to-cycle dispersion. A plateau value of the cone angle is
achieved when the spray is completely developed (t ~ 500 ps).

The injection strategies in the experimental campaign cover the entire injection pressure
range for the three injectors. The pulse durations are calibrated to deliver 10, 20 and 50 mg
of gasoline at different injection pressures. Some single injection tests are reported in Table
2. Fig.2 reports a typical energizing current signal to the solenoid for injecting 20 mg of fuel
at the pressure of 10 MPa, and the correspondent fuel injection rate signals, as collected for
the three injectors. The signals are averaged over one hundred shots. A shift of 0.35 ms is
registered between the start of energizing current and the exiting of fuel from the nozzle,
indicating a postponed answer of the mechanical parts. This delay remains practically
unchanged for all the three devices. Differently, the fuel injection rate signals show different
rise times: for both the Bosch injectors it is of about 70 us, while for the Continental one it is
of about 170 us. Furthermore, the closure time for Injector #3 is longer than for the others,
namely it is of about 70 ps. The precise overlapping between signals relevant to Injectors #1
and #2 is indicative of an analogue behaviour of the moving equipment, while the Injector
#3 has a slight larger inertia, hence greater opening and closing delays. This implies a
different promptness availability of the fuel with the same command signals.

Piyj (MPa) 3 6 [ 10 [ 10 [ 15 | 20 | 23
twi (us) | 1000 | 1900 | 1450 | 3600 | 2900 | 2600 | 2500
m; (mg) 10 | 20 | 20 | 50 | 50 | 50 | 50

Table 2. Time durations of the pulses for the desired fuel amounts at the indicated injection
pressures.
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Fig. 2. Energizing solenoid current (top) and fuel injection rates (bottom) for the three
considered injectors at Pi,=10 MPa, m¢= 20 mg.
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Fig. 3. Measured mass flow rates for four injection pressures and two values of the total
injected mass for Injector #1.
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Fig. 4. Sequence of sprays from Injector #1 taken at different time from the SOI at
Pinj =10 MPa, ms= 501’I1g
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Fig. 5. Sequence of sprays from Injector #2 taken at different time from the SOI at
Pinj =10 MPa, ms= 501’I1g
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Fig. 6. Sequence of sprays from Injector #3 taken at different time from the SOI at
Pinj = 10 MPa, m; = 50mg,.
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Fig.3 is drawn to give an idea of the operation of one of the considered injectors, namely
Injector #1, under different injection pressures and with current signals set to deliver two
injected quantities, m=10 mg and m=50 mg. The injection pressure is equal to 3 and 6 MPa
for m=10 mg, and 10 and 20 MPa for m;=50 mg. The figure highlights the great flexibility of
the injector in its capability to range from what are low to high load engine conditions.
Images of the jets evolving in the optically accessible vessel at different instants from SOI are
reported in Figs. 4-6. Fig. 4 is a sequence of the propagating jets produced by the Injector #1
at 50, 100, 200, 500 and 700 ps from the SOI at the injection pressure of 10 MPa and 50 mg
delivered gasoline. The lateral view of the spray allows distinguishing the origin of the
single jets close to the nozzle exit. Four single well-confined arrows appear in the CCD view
plane, while the last two are in the back side. The chosen orientation of the injector enables a
complete view of the jet placed in the bottom part of the figure (horizontal), and permits a
precise determination of its length, under the main hypothesis that all the jets behave in a
similar way. In Figs. 5 and 6 the propagating sprays for the Injector #2 and Injector #3 are
reported, respectively, under the same injection conditions of Fig. 4. Differences in the
structure of the global spray appear due to the different number of holes and directions,
although the overall behaviour appears almost unchanged. Injectors #1 and #2 assume
analogues total angle while Injector #3 has a larger one. Detectable differences should
appear from the punctual measurements of the penetrations and cone-angles.

The spray images highlight a complex structure of the evolving jets with inner bunches or
fuel pockets picked out by the highest intensities of the scattered light. This aspect is
indicative of a non homogeneous distribution of the fuel and is peculiar of the injection
process. Fig. 7 reports an example of the front-view images of the sprays from the three
injectors taken at 700 ps from the SOI, 10 MPa injection pressure and 50 mg injected fuel.
The number of jets, their directions and the difference in the footprint figures for the diverse
devices are evident. The six jets of Injector #1 are gathered together with respect to the other
two. Injector #2 has a wider rose of the jets, with the seven sprays well distinguishable.

Injector #1 - 6 holes Injector #2 - 7 holes Injector #3 - 6 holes

Fig. 7. Frontal-view images for the sprays issuing from the three considered injectors at 700
ps from the SOI, Py = 10MPa, m¢ = 50 mg,.

An idea of the behaviour of Injectors #1 and #2 under double strategies is given in Figs. 8
and 9. Fig. 8 reports the fuel injection rate signal collected for a double-pulse strategy at the
injection pressure of 6 MPa for Injector #1, together with the timing of the solenoid driving
current. Each pulse is equal to 0.9 ms in duration, hence the gasoline injected mass is split in
percentages equal to 50% plus 50% of the total amount. Stability and repetitiveness of the
injection events is studied by varying the value of the dwell time, dw, from the minimum
value up to 1.5 ms. The minimum value of this variable, below which the opening of the
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second injection event interferes with the closing of the previous one, due to the electro-
hydraulic inertia of the internal mobile equipment, is equal to 320 ps. Fig. 9 represents four
different strategies of Injector #2, all delivering a total mass equal to 20 mg at the injection
pressure of 10 MPa. It is to be remarked that also for this injector the minimum dwell time
allowing distinguishable events is equal to 320 ps. The top of Fig. 9 shows the single pulse
strategy. The setting for a 50% fuel injected during the first pulse and the remaining 50%
delivered during the second one is then plotted. The successive strategy exhibits a 30+70%
splitting, while at the bottom of the figure the 70+30% case is represented. This last could
serve to realize, in the engine working cycle, a homogeneous combustion followed by a
post-injection aimed at improving the exhaust conditions for a more effective catalytic
conversion. Note that these percentages are just indicative and can be varied at will by
modulating the energizing currents duration. Since no memory of the first pulse is induced
in the second one above the minimum dwell time, the regulation of the percentages is a
mere question of current settings.
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Fig. 8. Fuel injection rate for a double injection strategy at the minimum dw (top) with the
corresponding exciting solenoid currents (bottom) for Injector #1. Pin= 6 MPa.
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Fig. 9. Fuel injection rates for a single injection and for double injection strategies split at
50+50%, 30+70% and 70+30% for Injector #2.

3. Numerical simulation of the GDI spray dynamics

Reducing development time, improving performances and reliability of numerical models is
of crucial importance for the design of new engine components. The use of optimization
methods coupled with modern CFD tools is today very effective to accomplish these tasks,
especially where uncertainty exists about a number of involved constants. Numerical
procedures, in fact, may be used to generate a series of progressively improved solutions to
the optimization problem, starting from an initial one. The process is terminated when some
convergence criterion is satisfied.

In the present section the assessment of a simulation tool reproducing the spatio-temporal
dynamics of sprays issuing from new generation high pressure injectors under various
operating conditions is presented. The model, developed within the AVL Fire™ code
environment, is conceived to exploit the previously described experimental data in part as
input parameters, in part as terms of comparison for the numerical results.

In order to numerically simulate the effected tests, the spray is hypotesised to enter the top
surface of a properly dimensioned computational dom